\(\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+.....+\dfrac{2}{99\times100}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

\(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)

\(=2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=2.\left(1-\dfrac{1}{100}\right)=2.\dfrac{99}{100}=\dfrac{99}{50}\)

19 tháng 1 2019

Đặt A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

=> A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=> A = 1 - \(\dfrac{1}{100}\) = \(\dfrac{99}{100}\)

=> 1 = \(\dfrac{100}{100}\)

=> A < 1

18 tháng 6 2019

A = 11.2+12.3+13.4+...+199.10011.2+12.3+13.4+...+199.100

=> A = 1−12+12−13+13−14+...+199−11001−12+12−13+13−14+...+199−1100

=> A = 1 - 11001100 = 9910099100

=> 1 = 100100100100

=> A < 1

17 tháng 10 2017

\(E=\dfrac{11.3^{29}-3^{2^{15}}}{2.3^{14}.2.3^{14}}\)

\(=\dfrac{11.3-3^{30}}{2^2}=\dfrac{33-3^{30}}{4}\)

7 tháng 5 2017

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

26 tháng 7 2017

a, \(4\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)

\(=\left(-\dfrac{1}{2}\right)\left[\left(4\times-\dfrac{1}{2}\right)-\left(2\times-\dfrac{1}{2}\right)+3\right]+1\)

\(=\left(-\dfrac{1}{2}\right)\left(-2+1+3\right)+1\)

\(=\left(-\dfrac{1}{2}\right)2+1\)

\(=-1+1\)

\(=0\)

@Trịnh Thị Thảo Nhi

29 tháng 4 2018

a, 4×(−12)3−2×(−12)2+3×(−12)+14×(−12)3−2×(−12)2+3×(−12)+1

=(−12)[(4×−12)−(2×−12)+3]+1=(−12)[(4×−12)−(2×−12)+3]+1

=(−12)(−2+1+3)+1=(−12)(−2+1+3)+1

=(−12)2+1=(−12)2+1

=−1+1=−1+1

=0=0

6 tháng 1 2016

 ta có :

S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

S x 3 = 99x100x101

S = 99x100x101 : 3

S = 333300

6 tháng 5 2017

Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)

\(\dfrac{1}{7}A=\dfrac{1}{7}\left(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\right)\)

\(=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)

\(=\dfrac{7-2}{2.7}+\dfrac{11-7}{7.11}+\dfrac{14-11}{11.14}+\dfrac{15-14}{14.15}+\dfrac{28-15}{15.28}\)

\(=\dfrac{7}{2.7}-\dfrac{2}{2.7}+\dfrac{11}{7.11}-\dfrac{7}{7.11}+\dfrac{14}{11.14}-\dfrac{11}{11.14}+\dfrac{15}{14.15}-\dfrac{14}{14.15}+\dfrac{28}{15.28}-\dfrac{15}{15.28}\)

\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{28}\)

\(=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{14}{28}-\dfrac{1}{28}=\dfrac{13}{28}\)

\(A=\dfrac{13}{28}\div\dfrac{1}{7}=\dfrac{13}{4}\)

6 tháng 5 2017

Đặt A = \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)

\(\Rightarrow\dfrac{1}{7}.A=\dfrac{5}{2.7}+\dfrac{4}{7.11}+\dfrac{3}{11.14}+\dfrac{1}{14.15}+\dfrac{13}{15.28}\)

\(\Rightarrow\dfrac{1}{7}.A=\left(\dfrac{1}{2}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{11}\right)+\left(\dfrac{1}{11}-\dfrac{1}{14}\right)+\left(\dfrac{1}{14}-\dfrac{1}{15}\right)+\left(\dfrac{1}{15}-\dfrac{1}{28}\right)\)

\(\Rightarrow\dfrac{1}{7}.A=\dfrac{1}{2}-\dfrac{1}{28}=\dfrac{13}{28}\)

\(\Leftrightarrow A=\dfrac{13}{4}\)

Vậy...................

14 tháng 3 2016

Mk nghĩ A>2