K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)

\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)

Ta có :

\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)

\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)

\(\Rightarrow A-B< 0\)

\(\Rightarrow A< B\)

Vậy ta được \(A< B\)

1 tháng 12 2023


 

 

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

19 tháng 12 2021

Đề bài yêu cầu gì?

19 tháng 12 2021

Tìm B

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)

\(\Leftrightarrow\dfrac{x-2}{2020}-1+\dfrac{x-3}{2019}-1=\dfrac{x-2019}{3}-1+\dfrac{x-2020}{2}-1\)

=>x-2022=0

hay x=2022

7 tháng 2 2020

Ta có: 

\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)

=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)

Lấy

 \(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)

<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)

<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)

<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)

Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)

=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)

và \(0< \frac{2020}{4039}< 1\)

=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)

=> 0 < a < 1

=> a không phải là một số nguyên.

31 tháng 3 2020

toan lop may vay ban ?