Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2006}{1.2}+\frac{2006}{2.3}+...+\frac{2006}{2006.2007}\)
\(=2006.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\right)\)
\(=2006.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=2006.\left(1-\frac{1}{2007}\right)\)
\(=2006.\frac{2006}{2007}\)
\(=\frac{2006^2}{2007}\)
\(=\frac{2006}{1.2}+\frac{2006}{2.3}+...+\frac{2006}{2006.2007}\)
\(=2006 \left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\right)\)
\(=2006.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=2006.\left(1-\frac{1}{2007}\right)\)
\(=2006.\frac{2006}{2007}=\frac{4024036}{2007}\)
Đặt \(A=\frac{2006}{1\cdot2}+\frac{2006}{2\cdot3}+...+\frac{2006}{2006\cdot2007}\)
\(2006A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2006\cdot2007}\)
\(2006A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(2006A=\frac{1}{1}-\frac{1}{2007}\)
\(2006A=\frac{2006}{2007}\)
\(A=\frac{2006}{2007}\div2006\)
\(A=\frac{1}{2007}\)
Vậy giá trị của biểu thức bằng 1/2007
* Không chắc nha *
Sửa đề : \(A=\frac{2006}{1.2}+\frac{2006}{2.3}+...+\frac{2006}{2006.2007}\)
\(2006A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)
\(2006A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(2006A=1-\frac{1}{2007}\)
\(2006A=\frac{2006}{2007}\)
\(A=\frac{2006}{2007}:2006=\frac{2006}{2007}.\frac{1}{2006}=\frac{1}{2007}\)
\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)
\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)
Áp dụng Bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Ta có :
\(\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\dfrac{2006^{2006}+2006}{2006^{2007}+2006}=\dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}=\dfrac{2006^{2005}+1}{2006^{2006}+1}\)
\(\Leftrightarrow\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2005}+1}{2006^{2006}+1}\)
Ta có:
\(2006A=\dfrac{2006^{2007}+2016}{2006^{2007}+1}=1+\dfrac{2005}{2006^{2007}+1}\)
\(2006B=\dfrac{2006^{2006}+2006}{2006^{2006}+1}=1+\dfrac{2005}{2006^{2006}+1}\)
Do \(\dfrac{2005}{2006^{2006}+1}>\dfrac{2005}{2006^{2007}+1}\Rightarrow1+\dfrac{2005}{2006^{2006}+1}>1+\dfrac{2005}{2006^{2007}+1}\)
\(\Rightarrow2006A< 2006B\Rightarrow A< B\)
Mình sẽ giải cách ngắn hơn cách bạn đạt nha:
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}< 1\)
\(A< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}\Rightarrow A< \dfrac{2006^{2006}+2006}{2006^{2007}+2006}\Rightarrow A< \dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}\Rightarrow A< \dfrac{2006^{2005}+1}{2006^{2006}+1}=B\)\(A< B\)
a) Vì A=\(\dfrac{15^{16}+1}{15^{17}+1}\) < 1
\(\Rightarrow\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}\) \(=\dfrac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}\) \(=\dfrac{15^{15}+1}{15^{16}+1}\)
Vậy A<B
b) A=\(\dfrac{2006^{2007}+1}{2006^{2006}+1}>1\)
\(\Rightarrow\dfrac{2006^{2007}+1+2005}{2006^{2006}+1+2005}\)
= \(\dfrac{2006^{2007}+2006}{2006^{2006}+2006}\)
= \(\dfrac{2006\left(2006^{2006}+1\right)}{2006\left(2006^{2005}+1\right)}\)
= \(\dfrac{2006^{2006+1}}{2006^{2005}+1}\)
Vậy A>B
Lời giải:
Ta có:
\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}\)
\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}\)
Xét \(N\) và \(M\) có \(\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}\) chung.
Mà \(\dfrac{-8}{10^{2005}}>\dfrac{-8}{10^{2006}}\) nên \(N>M\).
Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)
\(=\dfrac{2006}{2007}\)
Giúp mình với
\(N=\dfrac{2006}{1.2}+\dfrac{2006}{2.3}+...+\dfrac{2006}{2006.2007}\)
\(N.2006=\dfrac{2006}{1}-\dfrac{2006}{2}+\dfrac{2006}{2}-\dfrac{2006}{3}+...+\dfrac{2006}{2006}-\dfrac{2006}{2007}\)
\(N.2006=2006-\dfrac{2006}{2007}\)
\(N=2006-\dfrac{2006}{2007}:2006\)
\(N=2006-\dfrac{1}{2007}\)