Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)
\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)
Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy...
\(\dfrac{2-x}{2017}+1=\dfrac{x-1}{2018}-1+1-\dfrac{x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{x-2019}{2018}+\dfrac{2019-x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}+\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)
\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
\(\Leftrightarrow2019-x=0\) (do \(\dfrac{1}{2017}>\dfrac{1}{2019}\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}>0\))
\(\Rightarrow x=2019\)
\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+2017}{3}+\dfrac{x+2016}{4}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2016}{4}+1\right)\)
\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{3}-\dfrac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+2020=0\) ( do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\))
\(\Leftrightarrow x=-2020\)
Vậy phương trình có tập nghiệm S = \(\left\{-2020\right\}\)
Sửa đề: \(\dfrac{x-4}{2019}+\dfrac{x-3}{2018}=\dfrac{x-2}{2017}+\dfrac{x-1}{2016}\)
\(\Leftrightarrow\dfrac{x-4}{2019}+1+\dfrac{x-3}{2018}+1=\dfrac{x-2}{2017}+1+\dfrac{x-1}{2016}+1\)
\(\Leftrightarrow\dfrac{x+2015}{2019}+\dfrac{x+2015}{2018}=\dfrac{x+2015}{2017}+\dfrac{x+2015}{2016}\)
\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x=-2015\) vì \(\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)\ne0\)
a) ĐKXĐ: \(x\ne\pm2\)
Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)
\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow x\left(x-2\right)=x^2+4\)
\(\Leftrightarrow x^2-2x=x^2+4\)
\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)
Vậy phương trình vô nghiệm
b) ĐKXĐ: \(x\ne3;x\ne-1\)
Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)
\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=0\)
\(\frac{x-1}{2017}+\frac{x-2}{2018}+\frac{x-3}{2019}=-3\)
\(\Leftrightarrow\frac{x-1}{2017}+1+\frac{x-2}{2018}+1+\frac{x-3}{2019}+1=0\)
\(\Leftrightarrow\frac{x+2016}{2017}+\frac{x+2016}{2018}+\frac{x+2016}{2019}=0\)
\(\left(x+2016\right)\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)=0\)
vì \(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\ne0\) nên
x+2016=0
\(\Leftrightarrow\)x=-2016
\(a.\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\\ \Leftrightarrow\dfrac{x-2}{2000}-1+\dfrac{x-3}{1999}-1=\dfrac{x-4}{1998}-1+\dfrac{x-5}{1997}-1\\ \Leftrightarrow\dfrac{x-2}{2000}-\dfrac{2000}{2000}+\dfrac{x-3}{1999}-\dfrac{1999}{1999}=\dfrac{x-4}{1998}-\dfrac{1998}{1998}+\dfrac{x-5}{1997}-\dfrac{1997}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}=\dfrac{x-2002}{1998}+\dfrac{x-2002}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}-\dfrac{x-2002}{1998}-\dfrac{x-2002}{1997}=0\\ \Leftrightarrow\left(x-2002\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\\ \)
\(Do:\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\\ \Rightarrow x-2002=0\\ \Leftrightarrow x=2002\\ Vậy:S=\left\{2002\right\}\)
Mấy câu khác tương tự :v
b: \(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
=>123-x=0
=>x=123
c: \(\Leftrightarrow\dfrac{x-2}{2017}+1=\dfrac{x-1}{2018}+\dfrac{x}{2019}\)
\(\Leftrightarrow\left(\dfrac{x-2}{2017}-1\right)=\left(\dfrac{x-1}{2018}-1\right)+\left(\dfrac{x}{2019}-1\right)\)
=>x-2019=0
=>x=2019
\(\dfrac{x+2}{2011}+\dfrac{x+2017}{4}=\dfrac{x+4}{2009}+\dfrac{x+2019}{6}\)
\(\Leftrightarrow\dfrac{x+2013-2011}{2011}+\dfrac{x+2013+4}{4}=\dfrac{x+2013-2009}{2009}+\dfrac{x+2013+6}{6}\)
\(\Leftrightarrow\dfrac{x+2013}{2011}-1+\dfrac{x+2013}{4}+1=\dfrac{x+2013}{2009}-1+\dfrac{x+2013}{6}+1\)
\(\Leftrightarrow\dfrac{x+2013}{2011}+\dfrac{x+2013}{4}-\dfrac{x+2013}{2009}-\dfrac{x+2013}{6}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2011}+\dfrac{1}{4}-\dfrac{1}{2009}-\dfrac{1}{6}\right)=0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
Vậy PT trên có nghiệm là S={-2013}
\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)
\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
suy ra x+y=0 hoặc y+z=0 hoặc x+z=0
hay x=-y hoặc y=-z hoặc x=-z
thay vào D ta tính dc kq
\(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\Leftrightarrow\left(\dfrac{2-x}{2017}+1\right)=\left(\dfrac{1-x}{2018}+1\right)+\left(1-\dfrac{x}{2019}\right)\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{2019-x}{2018}+\dfrac{2019-x}{2019}\)\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
Ta đã có: \(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}< 0\)
Vậy ta dễ dàng suy ra được \(S=\left\{2019\right\}\)
Cố gắng học Thư nhé! Say oh yeah!