Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a, b, bạn có thể làm được suy nghĩ đi nha
c)
Ta có pt tổng quát :
\(\dfrac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\dfrac{1}{\sqrt{a\left(a+1\right)}\left(\sqrt{a}+\sqrt{\left(a+1\right)}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}\sqrt{a+1}}=\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{a+1}}\)\(\Rightarrow C=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)..........Kaito Kid.......
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\\ =\dfrac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\dfrac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+....+\dfrac{1}{\sqrt{24.25}\left(\sqrt{25}+\sqrt{24}\right)}\\ =\dfrac{\sqrt{2}-1}{\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{2}.\sqrt{3}}+...+\dfrac{\sqrt{25}-\sqrt{24}}{\sqrt{25}.\sqrt{24}}\\ =1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\\ =1-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\)
=1-1/5=4/5
Xét :\(\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\dfrac{\sqrt{n+1}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Do đó :
S\(< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\right)\)\(=\dfrac{1}{2}\left(1-\dfrac{1}{5}\right)=\dfrac{2}{5}\)(dpcm)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{6+\sqrt{20}}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)}{10-2}\)
C = \(\dfrac{2\sqrt{30-10\sqrt{5}}+2\sqrt{6-2\sqrt{5}}}{8}\)
C = \(\dfrac{2\sqrt{\left(5-\sqrt{5}\right)^2}+2\sqrt{\left(\sqrt{5}-1\right)^2}}{8}\)
C = \(\dfrac{2\left(5-\sqrt{5}\right)+2\left(\sqrt{5}-1\right)}{8}\)
C = \(\dfrac{10-2\sqrt{5}+2\sqrt{5}-2}{8}\) = \(\dfrac{8}{8}\) = \(1\)
D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
D = \(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)
D = \(7-3\sqrt{5}-\left(7+3\sqrt{5}\right)\) = \(7-3\sqrt{5}-7-3\sqrt{5}\)
D = \(-6\sqrt{5}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\) = \(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{5}+1}\) = \(\sqrt{1}=1\)
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
1) \(\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{5}{4}\)
2) \(\dfrac{\sqrt{12.5}}{0.5}=\sqrt{\dfrac{12.5}{0.25}}=5\sqrt{2}\)
3) \(\sqrt{\dfrac{25}{64}}=\dfrac{5}{8}\)
4) \(\dfrac{\sqrt{230}}{\sqrt{2.3}}=\sqrt{\dfrac{230}{2.3}}=\sqrt{100}=10\)
5) \(\left(\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}\right)\cdot\sqrt{6}\)
\(=\left(\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{5\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=\left(\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=0\cdot\sqrt{6}=0\)
2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
a: \(\dfrac{1}{\sqrt{5}-\sqrt{3}+2}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-2}{\left(\sqrt{5}-\sqrt{3}\right)^2-4}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-2}{8-2\sqrt{15}-4}=\dfrac{\sqrt{5}-\sqrt{3}-2}{4-2\sqrt{15}}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}-2\right)\left(4+2\sqrt{15}\right)}{16-60}\)
\(=\dfrac{4\sqrt{5}+2\cdot\sqrt{75}-4\sqrt{3}-2\sqrt{45}-8-4\sqrt{15}}{-44}\)
\(=\dfrac{-2\sqrt{5}+6\sqrt{3}-8-4\sqrt{15}}{-44}\)
\(=\dfrac{\sqrt{5}-3\sqrt{3}+4+2\sqrt{15}}{22}\)
b: Sửa đề: \(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{24}+\sqrt{25}}\)
\(=\dfrac{-1+\sqrt{2}}{2-1}+\dfrac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\dfrac{-\sqrt{24}+\sqrt{25}}{25-24}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...+\left(-\sqrt{24}\right)+\sqrt{25}\)
=5-1
=4