Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(linh_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}\)
\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}\right)\)
\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{4.5}\right)\)
\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{2}.\dfrac{9}{20}=\dfrac{9}{40}\)
\(linh_2=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)
\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\)\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)\)
\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{90}\right)=\dfrac{1}{2}.\dfrac{22}{45}=\dfrac{11}{45}\)
a/ \(G=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}\)
\(\Leftrightarrow2G=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}\)
\(\Leftrightarrow2G=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}\)
\(\Leftrightarrow2G=\dfrac{1}{1.2}-\dfrac{1}{4.5}\)
\(\Leftrightarrow2G=\dfrac{1}{2}-\dfrac{1}{20}\)
\(\Leftrightarrow2G=\dfrac{9}{20}\)
\(\Leftrightarrow G=\dfrac{9}{40}\)
b/ \(H=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.....+\dfrac{1}{8.9.10}\)
\(\Leftrightarrow2H=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+.....+\dfrac{2}{8.9.10}\)
\(\Leftrightarrow2H=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(\Leftrightarrow2H=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)
\(\Leftrightarrow2H=\dfrac{1}{2}-\dfrac{1}{90}\)
\(\Leftrightarrow2H=\dfrac{22}{45}\)
\(\Leftrightarrow H=\dfrac{22}{90}\)
a,
\(\left(20+9\dfrac{1}{4}\right):2\dfrac{1}{4}=\left(20+\dfrac{37}{4}\right):\dfrac{9}{4}\\ =\dfrac{117}{4}\cdot\dfrac{4}{9}\\ =\dfrac{117}{9}=13\)
b,
\(\left(6-2\dfrac{4}{5}\right)\cdot3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\\ =\left(6-\dfrac{14}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\\ =\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\\ =10-\dfrac{32}{5}\\ =\dfrac{18}{5}\)
c,
\(\dfrac{32}{15}:\left(-1\dfrac{1}{5}+1\dfrac{1}{3}\right)\\ =\dfrac{32}{5}:\left(-\dfrac{6}{5}+\dfrac{4}{3}\right)\\ =\dfrac{32}{5}:\dfrac{2}{15}\\ =\dfrac{32}{5}\cdot\dfrac{15}{2}\\ =48\)
a, ( 20 + \(9\dfrac{1}{4}\) ) : \(2\dfrac{1}{4}\)
= ( 20 + \(\dfrac{37}{4}\) ) : \(\dfrac{9}{4}\)
= ( \(\dfrac{80}{4}\) + \(\dfrac{37}{4}\) ) . \(\dfrac{4}{9}\)
= \(\dfrac{117}{4}\) . \(\dfrac{4}{9}\)
= \(\dfrac{117}{9}\) = 13
b, ( 6 - \(2\dfrac{4}{5}\) ) . \(3\dfrac{1}{8}\) - \(1\dfrac{3}{5}\) : \(\dfrac{1}{4}\)
= ( 6 - \(\dfrac{14}{5}\) ) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\) . 4
= ( \(\dfrac{30}{5}\) - \(\dfrac{14}{5}\) ) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\) . 4
= \(\dfrac{16}{5}\) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\). 4
= 10 - \(\dfrac{32}{5}\)
= \(\dfrac{50}{5}\) - \(\dfrac{32}{5}\)
= \(\dfrac{18}{5}\)
c, \(\dfrac{32}{15}\) : ( -\(1\dfrac{1}{5}\) + \(1\dfrac{1}{3}\) )
= \(\dfrac{32}{15}\) : ( \(\dfrac{-6}{5}\) + \(\dfrac{4}{3}\) )
= \(\dfrac{32}{15}\) : ( \(\dfrac{-18}{15}\) + \(\dfrac{20}{15}\) )
= \(\dfrac{32}{15}\) : \(\dfrac{2}{15}\)
= \(\dfrac{32}{15}\) . \(\dfrac{15}{2}\)
= 16
Ừk
7.
\(G=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\\ =\dfrac{1}{3}-\dfrac{1}{13}\\ =\dfrac{13}{39}-\dfrac{3}{39}\\ =\dfrac{10}{39}\)
8.
\(H=\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{755}+\dfrac{1}{1147}\\ =\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+\dfrac{1}{13\cdot19}+\dfrac{1}{19\cdot25}+\dfrac{1}{25\cdot31}+\dfrac{1}{31\cdot37}\\ =\dfrac{1}{6}\cdot\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+\dfrac{6}{13\cdot19}+\dfrac{6}{19\cdot25}+\dfrac{6}{25\cdot31}+\dfrac{6}{31\cdot37}\right)\\ =\dfrac{1}{6}\cdot\left(\dfrac{1}{1}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{37}\right)\\ =\dfrac{1}{6}\cdot\left(1-\dfrac{1}{37}\right)\\ =\dfrac{1}{6}\cdot\dfrac{36}{37}\\ =\dfrac{6}{37}\)
Lấy bằng cách bạn cần giải 1 câu hỏi khó mà bạn giải phải đúng thì sẽ được online masth tính điểm(như mk nè)
Bạn cần giải 1 bài của 1 người nào đó đủ điểm bạn cần thì bạn giải xong thì người đó sẽ k cho bạn thì bạn sẽ tăng điểm(như mk nè)
Chúc bạn hok tốt
Dấu " / " là phân số nhé
a) 5/-4 . 16/25 + -5/4 . 9/25
= -5/4 . 16/25 + -5/4 . 9/25
= -5/4 . ( 16/25 + 9/25 )
= -5/4 . 1
= -5/4
b) 4 11/23 - 9/14 + 2 12/23 - 5/4
= 103/23 - 9/14 + 58/23 - 5/4
= 103/23 + 58/23 - 9/14 - 5/4
= 7 - 9/14 - 5/4
= 143/28
c) 2 13/27 - 7/15 + 3 14/27 - 8/15
= 67/27 - 7/15 + 95/27 - 8/15
= 67/27 + 95/27 - 7/15 - 8/15
= 6 - 7/15 - 8/15
= 5
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
a, \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)
Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}\)
b,
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
\(3B=\dfrac{5.3}{1.4}+\dfrac{5.3}{4.7}+...+\dfrac{5.3}{100.103}\)
\(3B=5\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)
\(3B=5\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(3B=5\left(1-\dfrac{1}{103}\right)=5\cdot\dfrac{102}{103}=\dfrac{510}{103}\)
\(B=\dfrac{510}{103}:3=\dfrac{170}{103}\)
\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
\(C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
\(2C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{51}=\dfrac{16}{51}\)
\(C=\dfrac{16}{51}:2=\dfrac{8}{51}\)
a,Vế trái:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)
b,chưa có câu trả lời, sorry nha
1 ; 2 ; 3 ; 4 ; 5
giúp với ạ