\(\dfrac{1}{\begin{matrix}1\times&2\end{matrix}}+\dfrac{1}{\begin{matrix}2\times&3\end{m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Đặt

\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)

\(S=\dfrac{49}{99}\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{9999}=\dfrac{49}{99}\)

\(\Rightarrow\dfrac{1}{x}=\dfrac{50}{101}\Leftrightarrow50x=101\Leftrightarrow x=\dfrac{101}{50}\)

15 tháng 7 2017

Đặt \(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(M=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(M=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)

\(M=\dfrac{1}{2}\cdot\dfrac{98}{99}\)

\(M=\dfrac{49}{99}\)

a) \(\dfrac{1+\dfrac{1}{4}}{1-\dfrac{1}{4}}:\dfrac{1+\dfrac{1}{8}}{1-\dfrac{1}{8}}\\ =\dfrac{\dfrac{5}{4}}{\dfrac{3}{4}}:\dfrac{\dfrac{9}{8}}{\dfrac{7}{8}}\\ =\dfrac{5}{3}:\dfrac{9}{7}\\ =\dfrac{5}{3}.\dfrac{9}{7}\\ =\dfrac{35}{27}=1\dfrac{8}{27}\)

b) \(0,25+37\%-2\dfrac{1}{4}\\ =\dfrac{1}{4}+\dfrac{37}{100}-\dfrac{9}{4}\\ =\dfrac{25+37-225}{100}\\ =-\dfrac{163}{100}=-1\dfrac{63}{100}\)

\(=\dfrac{-5}{12}+\dfrac{5}{12}+\dfrac{6}{11}+\dfrac{5}{11}+\dfrac{7}{18}=1+\dfrac{7}{18}=\dfrac{25}{18}\)

Ta có: \(\frac{2}{3}a=\frac{1}{4}b\)

\(\Leftrightarrow\frac{2a}{3}=\frac{b}{4}\)

\(\Leftrightarrow2a=\frac{3b}{4}\)

hay \(a=\frac{3b}{4}:2=\frac{3b}{8}\)

Ta có: \(\frac{1}{2}b=\frac{1}{3}c\)

\(\Leftrightarrow\frac{b}{2}=\frac{c}{3}\)

hay \(c=\frac{3b}{2}\)

Ta có: a+b+c=90

\(\Leftrightarrow\frac{3b}{8}+b+\frac{3b}{2}=90\)

\(\Leftrightarrow b\left(\frac{3}{8}+1+\frac{3}{2}\right)=90\)

\(\Leftrightarrow b\cdot\frac{23}{8}=90\)

hay \(b=90:\frac{23}{8}=\frac{720}{23}\)

Ta có: \(a=\frac{3b}{8}\)(cmt)

hay \(a=3\cdot\frac{720}{23}:8=\frac{270}{23}\)

Ta có: a+b+c=90

\(\Leftrightarrow c=90-a-b=90-\frac{270}{23}-\frac{720}{23}=\frac{1080}{23}\)

Vậy: \(\left(a,b,c\right)=\left(\frac{270}{23};\frac{720}{23};\frac{1080}{23}\right)\)

24 tháng 12 2017

ta có : abc = 100a + 10b + c (1)

cba = 100c + 10b + a = (n-2)2 (2)

lấy (2) trừ (1) ta có: 99(a - c) = 4n - 5 => 4n - 5 \(⋮\) 99

100 \(\le\) n2 - 1 \(\le\) 999

<=> \(101\le n^2\le1000\)

<=> \(11\le n\le31\)

<=> \(44\le4n\le124\)

<=> \(39\le4n-5\le119\)

mà 4n - 5 \(⋮\) 99

=> 4n - 5 = 99

=> n = 26

=>abc = 262 - 1 = 675

VẬy.....