Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{41\times45}\)
\(\Rightarrow4S=\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{41\times45}\)
\(\Rightarrow4S=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\)
\(\Rightarrow4S=\dfrac{1}{5}-\dfrac{1}{45}\)
\(\Rightarrow4S=\dfrac{8}{45}\)
\(\Rightarrow S=\dfrac{2}{45}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{8}{45}=\dfrac{2}{45}\)
\(\Rightarrow\dfrac{7}{x}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{29}{45}\left(x\ne0\right)\\ \Rightarrow\dfrac{7}{x}+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\Rightarrow\dfrac{21}{3x}=\dfrac{21}{45}\Rightarrow3x=45\\ \Rightarrow x=15\)
\(S=\frac{1}{4}\times\left(\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+...+\frac{4}{41\times45}\right)\)
\(S=\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(S=\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(S=\frac{1}{4}\times\frac{8}{45}\)
\(S=\frac{1\times2}{1\times45}\)
\(S=\frac{2}{45}\)
Vậy \(S=\frac{2}{45}\)
Tk nha bn !!
\(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+...+\dfrac{1}{45\times49}\)
\(=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+...+\dfrac{4}{45\times49}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{45}-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{49}\right)=\dfrac{1}{4}\times\dfrac{48}{49}=\dfrac{12}{49}\)
\(I=\dfrac{2}{1\times5}+\dfrac{2}{5\times9}+\dfrac{2}{9\times13}+...+\dfrac{2}{181\times185}\)
\(=\dfrac{1}{2}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+...+\dfrac{4}{181\times185}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{181}-\dfrac{1}{185}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{185}\right)=\dfrac{1}{2}\times\dfrac{184}{185}=\dfrac{92}{185}\)
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)
Tự tính
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
= \(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\frac{102}{103}\)
= \(\frac{374}{103}\)
3/(1×5) + 3/(5×9) + 3/(9×13) + 3/(13×17) + 3/(17×21)
= 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + 1/17 - 1/21)
= 3/4 × (1 - 1/21)
= 3/4 × 20/21
= 5/7
\(\dfrac{4\times x}{1\times5}\) + \(\dfrac{4\times x}{5\times9}\) + \(\dfrac{4\times x}{9\times13}\) + \(\dfrac{4\times x}{13\times17}\) = 16
\(x\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+\dfrac{4}{13\times17}\right)\) = 16
\(x\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) \(\dfrac{16}{17}\) = 16
\(x\) = 16 : \(\dfrac{16}{17}\)
\(x\) = 17