\(\dfrac{15^{2016} . 11^{2017}}{3^{2016} . 55^{2017}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(\dfrac{2016}{2017}-\left(\dfrac{2016}{2017}+\dfrac{11}{19}\right)=\dfrac{2016}{2017}-\dfrac{2016}{2017}-\dfrac{11}{19}=-\dfrac{11}{19}\)

17 tháng 7 2017

\(B=\dfrac{2016}{2017-\left|x-2016\right|}\)

\(\left|x-2016\right|\ge0\)

\(\Rightarrow2017-\left|x-2016\right|\le2017\)

Dấu "=" xảy ra khi:

\(\left|x-2006\right|=0\Rightarrow x=2006\)

\(\Rightarrow MIN_B=\dfrac{2016}{2017-0}=\dfrac{2016}{2017}\)

17 tháng 7 2017

Với mọi x thì /x-2016/ >= 0

suy ra 2017-/x-2016/>=2017

suy ra \(\dfrac{2016}{2017-< x-2016>}\)>=\(\dfrac{2017}{2016}\)

hay B>=\(\dfrac{2017}{2016}\)

đểB=\(\dfrac{2017}{2016}\)thì x-2016=0suy ra x=2016

vậy giá trị nhỏ nhất của B là 2016 đạt đc khi và chỉ khi x=2016

xin lỗi mk ko viết đc kí hiệu, chúc bạn học tốt ạ

10 tháng 12 2017

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=...=\frac{x_{2016}}{x_{2016} }=\frac{x_1+x_2+...+x_{2017}}{x_2+x_3+...+x_{2017}} \)( 2016 số)

\(=>\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_2^{2016}}{ x_3^{2016}}=...=\frac{x_{2016}^{2016}}{x_{2017}^{2016}} =\frac{(x_1+x_2+...+x_{2016})^{2016}}{ (x_2+x_3+...+x_{2017})^{2016}}\)

\(\frac{x_1^{2016}}{x_2^{2016}}=\frac{x_1}{x_2}. \frac{x_2}{x_3}.\frac{x_3}{x_4}...\frac{x_{2016}}{x_{2017}} =\frac{x_1}{x_{2017}}\)

=>đpcm

19 tháng 6 2017

Giải:

Có:

\(A=\dfrac{2017^{2016-1}}{2017^{2017-1}}\)\(B=\dfrac{2017^{2015+1}}{2017^{2016+1}}\)

\(\Rightarrow A=\dfrac{2017^{2016-1}}{2017^{2017-1}}=\dfrac{2017^{2015}}{2017^{2016}}=\dfrac{1}{2017}\)

\(\Rightarrow B=\dfrac{2017^{2015+1}}{2017^{2016+1}}=\dfrac{2017^{2016}}{2017^{2017}}=\dfrac{1}{2017}\)

Vậy \(A=B\)

Chúc bạn học tốt!ok

19 tháng 6 2017

Ta có:

\(A=\dfrac{2017^{2016-1}}{2017^{2017-1}}=\dfrac{2017^{2015}}{2017^{2016}}=\dfrac{1}{2017}\)(1)

\(B=\dfrac{2017^{2015+1}}{2017^{2016+1}}=\dfrac{2017^{2016}}{2017^{2017}}=\dfrac{1}{2017}\)(2)

Từ (1) và (2) suy ra:

\(A=B\)

Chúc bạn học tốt!!!

P/s: Xem lại đề xem là +1 vs -1 ở dưới hay bên trên số mũ nha!!

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Ta có đpcm.

18 tháng 10 2017

cái chỗ x3-3/2016 phải là x3-3/2015, viết lộn