K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

`1/4x^2=-1/2x+2`

`<=>x^2=-2x+8`

`<=>x^2+2x+1=9`

`<=>(x+1)^2=9`

`<=>x+1=3` hoặc `x+1=-3`

`<=>x=2`     hoặc `x=-4`

a: \(M=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{1}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{4-2\sqrt{x}}{1}\)

\(=1:\left(\dfrac{2\sqrt{x}-4-3x+\sqrt{x}+2}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{-2\left(\sqrt{x}-2\right)}{1}\)

\(=\dfrac{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\cdot\left(-2\right)\cdot\left(\sqrt{x}-2\right)}{-3x+3\sqrt{x}-2}\)

\(=\dfrac{-4\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}{-3x+3\sqrt{x}-2}\)

b: M=20

=>\(-4\left(x-4\right)\left(\sqrt{x}-2\right)=-60x+60\sqrt{x}-40\)

=>\(x\sqrt{x}-2x-4\sqrt{x}+8=-15x+15\sqrt{x}-10\)

=>\(x\sqrt{x}+13x-19\sqrt{x}+18=0\)

=>\(x\in\varnothing\)

1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)

=>4x+8=3x-1

=>x=-9

2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)

=>8x-4=5x-7

=>3x=-3

=>x=-1

3: ĐKXD: x>=0

\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

=>\(x+\sqrt{x}-6=x-1\)

=>căn x=-1+6=5

=>x=25

4: ĐKXĐ: x>=0

PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

=>x-2*căn x-3=x-4

=>-2căn x-3=-4

=>2căn x+3=4

=>2căn x=1

=>căn x=1/2

=>x=1/4

25 tháng 8 2021

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

1: ĐKXĐ: \(a>-2\)

2: ĐKXĐ: \(x\ne2\)

3: ĐKXĐ: \(a\in\varnothing\)

 

1 tháng 10 2021

1)
\(-\dfrac{1}{\sqrt{a+2}}\) có nghĩa khi \(\sqrt{a+2}>0\)
=>a+2>0
    a>-2
2)
\(\sqrt{\dfrac{3}{\left(x-2\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(x-2\right)^2}}\) 
mà \(\left(x-2\right)^2>0=>\sqrt{\left(x-2\right)^2}>0vớimọix\)
3)
\(\sqrt{\dfrac{-3}{a^2-4a+4}}=\sqrt{\dfrac{-3}{\left(a-2\right)^2}}cónghĩakhi\left(a-2\right)^2< 0mà\left(a-2\right)^2>0=>biểuthứckocónghĩavớimọia\)
 

1: ĐKXĐ: \(-1< x< 1\)

2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)

3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)

4: ĐKXĐ: \(2< a\le3\)

18 tháng 8 2021

a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)  \(\left(ĐKXĐ:x\ge0\right)\)

\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)

\(\text{​​}\text{​​}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)

\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)

c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)

\(\Leftrightarrow x-\sqrt{x}+1>x\)

\(\Leftrightarrow x< 1\)

 

a: ĐKXĐ: \(x\ge0\)

Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

3 tháng 2 2021

Điều kiện: x>2

P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)

P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) P= \(\dfrac{1}{4}\)

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)

\(4\sqrt{x}-8=3\sqrt{x}\)

\(\sqrt{x}=8\)

⇔x=64 (TM) 

Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)

 

 

15 tháng 8 2023

\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)

\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)

Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)

a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)

=>x+6<0

=>x<-6

b: ĐKXĐ: (-2)/(6-x)>=0

=>6-x<0

=>x>6

c: ĐKXĐ: (-x+3)/(-6)>=0

=>-x+3<=0

=>-x<=-3

=>x>=3

d: ĐKXĐ: (7x-1)/-9>=0

=>7x-1<=0

=>x<=1/7

e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0

=>x+2>=0

=>x>=-1

f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0

=>x-2>=0

=>x>=2

a: Ta có: \(2\sqrt{2}-\dfrac{1}{2}\cdot\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\cdot\dfrac{1}{2}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{x}=4\sqrt{2}\)

hay x=32

b: Ta có: \(2\sqrt{x}-\sqrt{\dfrac{x}{3}}=1\)

\(\Leftrightarrow2\sqrt{x}-\dfrac{\sqrt{3}}{3}\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x}=\dfrac{6+\sqrt{3}}{11}\)

hay \(x=\dfrac{39+12\sqrt{3}}{121}\)

c: Ta có: \(4\sqrt{x}+\sqrt{\dfrac{x}{2}}=\dfrac{1}{3}\)

\(\Leftrightarrow4\sqrt{x}+\dfrac{\sqrt{2}}{2}\sqrt{x}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{x}=\dfrac{8-\sqrt{2}}{93}\)

hay \(x=\dfrac{66-16\sqrt{2}}{8649}\)