Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a: |x-1/2|=7/2
=>x-1/2=7/2 hoặc x-1/2=-7/2
=>x=4 hoặc x=-3
b: \(x:\dfrac{3}{8}+\dfrac{5}{8}=x\)
=>8/3x-x=-5/8
=>5/3x=-5/8
hay x=-5/8:5/3=-5/8x3/5=-15/40=-3/8
c: \(\dfrac{5}{6}-\left|x-\dfrac{1}{2}\right|=\dfrac{15}{18}=\dfrac{5}{6}\)
=>|x-1/2|=0
=>x-1/2=0
hay x=1/2
e: \(\left(5x-3\right)^2-\dfrac{1}{64}=0\)
=>(5x-3)2=1/64
=>5x-3=1/8 hoặc 5x-3=-1/8
=>5x=25/8 hoặc 5x=23/8
=>x=5/8 hoặc x=23/40
a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27
b: =>x*(-1/3)^3=(-1/3)^4
=>x=-1/3
d: =>3x-2=-3
=>3x=-1
=>x=-1/3
1)
a) \(0,25^x\cdot12^x=243\)
\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(38^y:19^y=512\)
\(\Leftrightarrow2y\cdot y=512\)
\(\Leftrightarrow2y^2=512\)
\(\Leftrightarrow y^2=256\)
\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)
Vậy \(y_1=-16;y_2=16\)
2)
a) \(3^x+3^{x+2}=2430\)
\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)
\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)
\(\Leftrightarrow10\cdot3^x=2430\)
\(\Leftrightarrow3^x=243\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(2^{x+3}-2^x=224\)
\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)
\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)
\(\Leftrightarrow7\cdot2^x=224\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
3)
a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)
b) \(\left(x+0,7\right)^3=-27\)
\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x+\dfrac{3}{10}=-3\)
\(\Leftrightarrow x=-3-\dfrac{3}{10}\)
\(\Leftrightarrow x=-\dfrac{37}{10}\)
Vậy \(x=-\dfrac{37}{10}\)
4)
a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)
b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(\Leftrightarrow2x-1=1\)
\(\Leftrightarrow2x=1+1\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
1. a) \(0,25^x.12^x=243\)
\(\Rightarrow\left(0,25.12\right)^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(38^y:19^y=512\)
\(\Rightarrow\left(38:19\right)^y=512\)
\(\Rightarrow2^y=2^9\)
\(\Rightarrow y=9\)
Vậy \(y=9.\)
2) a) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x\left(1+9\right)=2430\)
\(\Rightarrow3^x=243=3^5\)
\(\Rightarrow x=5\)
Vậy x=5.
b) \(2^{x+3}-2^x=224\)
\(\Rightarrow2^x\left(8-1\right)=224\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
Vậy x=5.
Bài 3: dễ tự làm.
1,\(\dfrac{a}{b}=\dfrac{x}{y}\) khi ay=bx
2,
a,x=\(\dfrac{-1.12}{4}\)
x=\(\dfrac{-12}{4}=-3\)
b,\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)
\(\Rightarrow\)2x-1=5
2x=6
x=6:2=3
c,\(\dfrac{4}{7}\).x=\(\dfrac{1}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)
\(\dfrac{4}{7}.x=\dfrac{13}{15}\)
\(x=\dfrac{13}{15}:\dfrac{4}{7}\)
x=\(\dfrac{13}{15}.\dfrac{7}{4}=\dfrac{91}{60}\)
3,ta có:\(5^{202}=\left(5^2\right)^{101}\)=\(25^{101}\)
2\(^{505}\)=\(\left(2^5\right)^{101}\)=\(32^{101}\)
vì 25<32 nên \(25^{101}< 32^{101}\) hay \(5^{202}< 2^{505}\)
1) \(\dfrac{a}{b}=\dfrac{x}{y}\) khi \(a.y=b.x\)
2) \(a,\dfrac{x}{12}=\dfrac{-1}{4}\)
\(\Rightarrow4x=-12\)
\(\Rightarrow x=-\dfrac{12}{4}=-3\)
Vậy x = -3
\(b,\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)
\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)
\(\Rightarrow2x-1=5\)
\(\Rightarrow x=\dfrac{5-1}{2}=2\)
Vậy x = 2
\(c,\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)
\(\dfrac{4}{7}x=\dfrac{1}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}x=\dfrac{13}{15}\)
\(\Rightarrow x=\dfrac{13}{15}:\dfrac{4}{7}=1\dfrac{31}{60}\)
Vậy \(x=1\dfrac{31}{60}\)
3) So sánh \(5^{202}\) và \(2^{505}\)
\(5^{202}=\left(5^2\right)^{101}=25^{101}\)
\(2^{505}=\left(2^5\right)^{101}=32^{101}\)
\(\Rightarrow25^{101}< 32^{101}\)
\(\Rightarrow5^{202}< 2^{505}\)
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
a: =>x-1/2=1/3
=>x=5/6
b: =>|2x-1|=x+1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x-1-x-1\right)\left(2x-1+x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x-2\right)\left(3x\right)=0\end{matrix}\right.\)
hay \(x\in\left\{2;0\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
a, \(x^2=\dfrac{1}{16}\Rightarrow x=\pm\dfrac{1}{4}\)
b, \(x^5:x^2=-\dfrac{1}{64}\Rightarrow x^3=\left(-\dfrac{1}{4}\right)^3\Rightarrow x=-\dfrac{1}{4}\)
c, \(x^3:x^2=\dfrac{32}{243}\Rightarrow x=\dfrac{32}{243}\)
d, \(\left(x^2\right)^2=\dfrac{81}{16}\Rightarrow x^4=\left(\dfrac{3}{2}\right)^4\Rightarrow x=\pm\dfrac{3}{2}\)
Chúc bạn học tốt!!!
3) Tìm x
a) \(^{x^2}\)=\(\dfrac{1}{16}\)
<=> x = \(\sqrt{-\dfrac{1}{16}}\)
\(\sqrt{\dfrac{1}{16}}\)
<=> x = -14
+14
b) \(x^{5^{ }}\): \(x^2\) = \(-\dfrac{1}{64}\)
<=> \(^{x^{5-2}}\) =\(-\dfrac{1}{64}\)
<=> \(x^3\) = \(-\dfrac{1}{64}\)
<=> x = \(-\dfrac{1}{4}\)
c)\(x^3:x^2\) = \(\dfrac{32}{243}\)
<=> \(^{x^{3-2}}\) = \(\dfrac{32}{243}\)
<=> x = \(\dfrac{32}{243}\)
d) \((x^2)^2\) = \(\dfrac{81}{16}\)
<=>\(^{x^{2.2}}\) = \(\dfrac{81}{16}\)
<=> \(x^4\) = \(\dfrac{81}{16}\)
<=> x = \(\dfrac{3}{2}\)
\(-\dfrac{3}{2}\)
a) \(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)
\(\Leftrightarrow A=-5,13:\left(5\dfrac{5}{28}-\dfrac{85}{36}+1\dfrac{16}{63}\right)\)
\(\Leftrightarrow A=-5,13:\left(\dfrac{355}{126}+1\dfrac{16}{63}\right)\)
\(\Leftrightarrow A=-5,13:\dfrac{57}{14}\)
\(\Leftrightarrow A=\dfrac{-63}{50}\)
b) \(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right).\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)
\(\Leftrightarrow B=\left(\dfrac{19}{3}+19,5.\dfrac{3}{13}\right).\dfrac{2}{3}\)
\(\Leftrightarrow B=\left(\dfrac{19}{3}+\dfrac{9}{2}\right).\dfrac{2}{3}\)
\(\Leftrightarrow B=\dfrac{65}{6}.\dfrac{2}{3}\)
\(\Leftrightarrow B=\dfrac{65}{9}\)
\(\left(\dfrac{1}{3}\right)^x+\left(\dfrac{1}{3}\right)^{x+3}=\dfrac{28}{243}\\ \Rightarrow\left(\dfrac{1}{3}\right)^x+\left(\dfrac{1}{3}\right)^x.\left(\dfrac{1}{3}\right)^3=\dfrac{28}{243}\\ \Rightarrow\left(\dfrac{1}{3}\right)^x+\left(\dfrac{1}{3}\right)^x.\dfrac{1}{27}=\dfrac{28}{243}\\ \Rightarrow\dfrac{28}{27}\left(\dfrac{1}{3}\right)^x=\dfrac{28}{243}\\ \Rightarrow\left(\dfrac{1}{3}\right)^x=\dfrac{28}{243}:\dfrac{28}{27}\\ \Rightarrow\left(\dfrac{1}{3}\right)^x=\dfrac{1}{9}\\ \Rightarrow\left(\dfrac{1}{3}\right)^x=\left(\dfrac{1}{3}\right)^2\\ \Rightarrow x=2\)
(1/3)x +(1/3)x+3=28/243 (1/3)x +(1/3)x *(1/3)3=28/243 (1/3)x *(1+1/33)=28/243 (1/3)x *28/27=28/243 (1/3)x=1/9 (1/3)x=(1/3)2 vậy x =2