Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
a) \(\left(\frac{11}{4}.\frac{-5}{9}-\frac{4}{9}.\frac{11}{4}\right).\frac{8}{33}\)
=\(\frac{11}{4}\left(-\frac{5}{9}-\frac{4}{9}\right).\frac{8}{33}\)
=\(\frac{11}{4}\cdot-1\cdot\frac{8}{33}\)
=\(-\frac{11}{4}\cdot\frac{8}{33}\)
=\(-\frac{2}{3}\)
b)\(-\frac{1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot-\frac{1}{11}\)
=\(\frac{-1.152}{4.11}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1.152}{11.4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\frac{152}{4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\left(\frac{152}{4}+\frac{68}{4}\right)\)
=\(\frac{-1}{11}\cdot55=-5\)
c)\(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
=\(-1\cdot\frac{2}{3}\left(\frac{4}{5}+\frac{3}{5}\right)\)
=\(-1\cdot\frac{2}{3}\cdot\frac{7}{5}\)
=\(-\frac{2}{3}\cdot\frac{7}{5}\)
=\(\frac{-14}{15}\)
d) chưa nghĩ ra nhé
e) bạn chép sai đề bài rồi
mk mới kiểm tra 45 phút nên biết
đề bài nè
\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
=\(\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot...\cdot\frac{29.31}{30^2}\)
=\(\frac{1.3.2.4.3.5...29.31}{2.2.3^2.4^2...30.30}\)
=\(\frac{1.2.3^2.4^2.5^2....29^2.30.31}{2.2.3^2.4^2.5^2....29^2.30.30}\)
=\(\frac{1.31}{2.30}\)
=\(\frac{31}{60}\)
a)trong ngoac bn dat thau so chung la 11/4 rui tinh binh thuong b)bn tu lam nhe c)dat thua so chung d)tinh trong ngoac ra rui nhan vs e) mk bo tay
\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(D< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(D^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(D^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)
=> \(D< \frac{1}{10}\left(đpcm\right)\)
\(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(D< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(D^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(D^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)
\(= >D< \frac{1}{10}\)
\(\text{k tui}\)