Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)
\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)
\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)
\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)
b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)
Ta có:
\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)
\(B< \dfrac{2n}{4n+2}\)
\(B< \dfrac{2n}{2\left(2n+1\right)}\)
\(B< \dfrac{n}{2n+1}\)
Ta có: \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)
Thế vô bài toán ta được
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{\left(n-1\right)\left(n+1\right)}{n.n}=\dfrac{1}{2}.\dfrac{n+1}{n}\)
Ta thấy
\(\dfrac{1}{2}.\dfrac{n}{n}< \dfrac{1}{2}.\dfrac{n+1}{n}< \dfrac{1}{2}.\dfrac{n+n}{n}\)
\(\Rightarrow\dfrac{1}{2}< \dfrac{1}{2}.\dfrac{n+1}{n}< 1\)
\(\Rightarrow\)ĐPCM
Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với
Đặt \(B=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\)
Đặt \(A=\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
\(=\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
\(=n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
\(=\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}=n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2}\right)=n.B\)
\(A:B=n\)
bn kt lại đề giúp mk , mk nghĩ mấu phải là x2 - 1 ; x4 - 1 ; x16 - 1
Sửa đề
\(\dfrac{1}{x-1}-\dfrac{1}{x+1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{2}{x^2-1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{4}{x^4-1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{8}{x^8-1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{16}{x^{16}-1}-\dfrac{16}{x^{16}+1}=\dfrac{32}{x^{32}-1}\)
Chào tiểu thư ^_^ !
1)Rút gọn biểu thức
\(Q=\dfrac{1}{1^4+1^2+1}+\dfrac{2}{2^4+2^2+1}+...+\dfrac{n}{n^4+n^2+1}\)
\(Q=\dfrac{1}{1^4\left(1+1^{-2}+1^{-4}\right)}+\dfrac{2}{2^4\left(1+1^{-2}+1^{-4}\right)}+...+\dfrac{n}{n^4\left(1+1^{-2}+1^{-4}\right)}\\
\Leftrightarrow Q=\dfrac{1}{3}+\dfrac{1}{2^3.3}+...+\dfrac{1}{n^3.3}\\
\Leftrightarrow Q=\dfrac{1}{3}\left(\dfrac{1}{2^3}+...+\dfrac{1}{n^3}\right)\\
\Leftrightarrow Q=\dfrac{1}{3}\left(\dfrac{1}{8}+...+\dfrac{1}{n^3}\right)\)
2 Giải pt
\(\dfrac{4x^2+14}{x^2+6}-\dfrac{5}{x^2+1}=\dfrac{7}{x^2+3}+\dfrac{9}{x^2+5}\\
\Leftrightarrow\dfrac{4x^2+14}{x^2+6}-3-\dfrac{5}{x^2+1}+1-\dfrac{7}{x^2+3}+1-\dfrac{9}{x^2+5}+1=0\\
\Leftrightarrow\dfrac{4x^2+14-3x^2-18}{x^2+6}-\dfrac{5+x^2+1}{x^2+1}-\dfrac{7+x^2+3}{x^2+3}-\dfrac{9+x^2+5}{x^2+5}=0\\
\Leftrightarrow\dfrac{x^2-4}{x^2+6}-\dfrac{x^2-4}{x^2+1}-\dfrac{x^2-4}{x^2+3}-\dfrac{x^2-4}{x^2+5}=0\\
\Leftrightarrow\left(x^2-4\right)\left(\dfrac{1}{x^2+6}-\dfrac{1}{x^2+1}-\dfrac{1}{x^2+3}-\dfrac{1}{x^2+5}\right)=0\\
\Leftrightarrow x^2-4=0\\
\Leftrightarrow x^2=4\\
\Leftrightarrow x=2\)Vậy pt có nghiệm là x=2
Chúc tiểu thư học tốt ! TDVN2005.
b.
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+....+\dfrac{2}{\left(n-1\right).n.\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)
Chứng minh: Ta có:
\(A=\dfrac{1}{1}+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}=\dfrac{1}{1}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \)
\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=\)=\(1+1-\dfrac{1}{n}=2-\dfrac{1}{n}\)
Nguyễn Xuân Tiến 24 hi