\(D=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

Ai có điều kiện vào team TST...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

\(D=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(D=1-\frac{1}{100}\)

\(D=\frac{99}{100}\)

kakaka thanks nhé mãi mới có người có ý thức

25 tháng 5 2019

\(D=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(D=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(D=1-\frac{1}{100}=\frac{99}{100}\)

~ Hok tốt ~

27 tháng 8

\(Đề:\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{99.100}\)

\(= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + . \ldots + \frac{1}{99} - \frac{1}{100}\)

\(= 1 - \frac{1}{100}\)

\(= \frac{99}{100}\)

3 tháng 5 2017

A = \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+... + \(\frac{1}{99}\)-\(\frac{1}{100}\)

A = \(\frac{1}{1}\)-\(\frac{1}{100}\)

ai tốt bụng thì tk cho mk nha, mk đg âm điểm đây 

A = \(\frac{99}{100}\)

3 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

5 tháng 6 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}=\frac{99}{100}\)

5 tháng 6 2016

1*1/2+1/2*1/3+1/3*1/4+.........+1/99*1/100

4 tháng 8 2016

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A = \(1-\frac{1}{100}=\frac{99}{100}\)

5 tháng 7 2017

\(B=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....++\frac{1}{9}-\frac{1}{10}\)

\(B=1-\frac{1}{10}=\frac{9}{10}\)

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(C=1-\frac{1}{100}\)

\(C=\frac{99}{100}\)

5 tháng 7 2017

\(D=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{496.501}\)

\(D=\frac{1}{5}\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+.....+\frac{1}{496}-\frac{1}{501}\right)\)

\(D=\frac{1}{5}\cdot\left(1-\frac{1}{501}\right)=\frac{1}{5}\cdot\frac{500}{501}=\frac{100}{501}\)

21 tháng 5 2021

= -101/100

21 tháng 5 2021


\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\ =-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\ =-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\ =-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)

17 tháng 6 2019

gọi chị đi hì ^_^. (kb nha

=\(1-\frac{1}{100}\)

17 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

25 tháng 3 2017

1)xE{2;0}                                                                                                                                                                                          2)abcd=a000+b00+c0+d=a.1000+b.100+c.10+d=(a.1000+b.96+c.8)+(4.b+2.c+d)=8.(a.125+b.12+c)+(d+2.c+4.b).                                    vì 8 chia hết cho 8 =>8.(a.125+b.12+c) chia hết cho 8.                                                                                                                           Mà d+2.c+4.b chia hết cho 8.                                                                                                                                                                =>8.(a.125+b.12+c)+(d+2.c+4.b) chia hết cho 8 hay abcd chia hết cho 8.                                                                                             3)3.S=1.2.3+2.3.3+3.4.3+...+99.100.3.                                                                                                                                                =>3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)                                                                                                   =>3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100.                                                                                                =>3S=99.100.101.=>3s=979902=>S=326634.                                 

25 tháng 3 2017

mình ko hiểu câu 3 và câu 1 lắm

27 tháng 5 2020

Công thức :\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

Áp dụng:

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Vậy.................

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)