Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)
\(C=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\)
\(C=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}\right)\)
\(C=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(C=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\)
\(C=\dfrac{1}{3}.\dfrac{9}{20}\)
\(C=\dfrac{3}{20}\)
Gọi \(S=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)
\(S=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\)
Nhân hai vế với 3 và áp dụng công thức tách một phân số thành hiệu hai phân số:
\(\dfrac{x}{n\left(n+x\right)}=\dfrac{1}{n}-\dfrac{1}{n+x}\)
\(\Rightarrow3S=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\right)\)
\(\Rightarrow3S=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}\)
\(\Rightarrow3S=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}\)
\(\Rightarrow3S=\dfrac{1}{2}-\dfrac{1}{20}\)
\(\Rightarrow3S=\dfrac{10}{20}-\dfrac{1}{20}\)
\(\Rightarrow3S=\dfrac{9}{20}\)
\(\Rightarrow S=\dfrac{9}{20}:3\)
\(\Rightarrow S=\dfrac{9}{20}.\dfrac{1}{3}\)
\(\Rightarrow S=\dfrac{3}{20}\)
a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)
b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)
c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)
ồ, lâu h ms gặp
a,
Dễ thấy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
Áp dụng khi \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N^{\circledast}\right)\)
Ta có:
\(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2016}+1+\left(2005^2-1\right)}{2005^{2017}+1+\left(2005^2-1\right)}=\dfrac{2005^{2016}+2005^2}{2005^{2017}+2005^2}=\dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)
Vậy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)
b,
\(\dfrac{19}{10}=\dfrac{10+9}{10}=\dfrac{10}{10}+\dfrac{9}{10}=1+\dfrac{9}{10}\\ \dfrac{49}{40}=\dfrac{40+9}{40}=\dfrac{40}{40}+\dfrac{9}{40}=1+\dfrac{9}{40}\)
Vì \(10< 40\Rightarrow\dfrac{9}{10}>\dfrac{9}{40}\Rightarrow1+\dfrac{9}{10}>1+\dfrac{9}{40}\Leftrightarrow\dfrac{19}{10}>\dfrac{49}{40}\)Vậy \(\dfrac{19}{10}>\dfrac{49}{40}\)
c,
\(\dfrac{13}{20}=\dfrac{20-7}{20}=\dfrac{20}{20}-\dfrac{7}{20}=1-\dfrac{7}{20}\\ \dfrac{33}{40}=\dfrac{40-7}{40}=\dfrac{40}{40}-\dfrac{7}{40}=1-\dfrac{7}{40}\)
Vì \(20< 40\Rightarrow\dfrac{7}{20}>\dfrac{7}{40}\Rightarrow1-\dfrac{7}{20}< 1-\dfrac{7}{40}\Leftrightarrow\dfrac{13}{20}< \dfrac{33}{40}\)
Vậy \(\dfrac{13}{20}< \dfrac{33}{40}\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(\)Đặt: \(B=\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
\(\Rightarrow B< \dfrac{2005^{2016}+1+4020024}{2005^{2017}+1+4020024}\)
\(B< \dfrac{2005^{2016}+4020025}{2005^{2017}+4020025}\)
\(B< \dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}\)
\(B< \dfrac{2005^{2014}+1}{2005^{2015}+1}=A\)
\(B< A\)
\(\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}\)+\(\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{3}\right)}\)
=\(\frac{3}{5}\)+\(\frac{1}{\frac{5}{2}}\)
=\(\frac{3}{5}\)+\(\frac{2}{5}\)
=1 !!!
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\dfrac{6}{56}\)
\(A=\dfrac{1}{1}.\dfrac{1}{56}\)
\(A=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{9}{12.21}+\dfrac{9}{21.30}\right)-4\left(\dfrac{10}{24.34}+\dfrac{10}{34.44}+\dfrac{10}{44.54}+\dfrac{10}{54.64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{5}{60}-\dfrac{2}{60}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{64}\right)\)
\(B=5.\dfrac{3}{60}-\left(\dfrac{4}{24}-\dfrac{4}{64}\right)\)
\(B=5.\dfrac{1}{20}-\left(\dfrac{1}{6}-\dfrac{1}{16}\right)\)
\(B=\dfrac{5}{20}-\left(\dfrac{8}{48}-\dfrac{3}{48}\right)\)
\(B=\dfrac{1}{4}-\dfrac{5}{48}\)
\(B=\dfrac{12}{48}-\dfrac{5}{48}\)
\(B=\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}:\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}.\dfrac{48}{7}\)
\(\dfrac{A}{B}=\dfrac{1}{7}.\dfrac{6}{7}\)
\(\dfrac{A}{B}=\dfrac{6}{49}=\dfrac{48}{392}< \dfrac{49}{392}=\dfrac{1}{8}\)
\(\dfrac{A}{B}< \dfrac{1}{8}\)
Vậy \(\dfrac{A}{B}< \dfrac{1}{8}\)
a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)
⇒\(A>B\)
b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)
Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)
⇒ \(C< D\)
c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)
\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)
Vì \(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)
⇒ \(M< N\)
Đặt \(A=\dfrac{1}{10}-\dfrac{1}{40}-\dfrac{1}{88}-\dfrac{1}{154}-\dfrac{1}{238}-\dfrac{1}{340}\)
\(\Leftrightarrow3A=\dfrac{3}{10}-\dfrac{3}{40}-\dfrac{3}{88}-\dfrac{3}{154}-\dfrac{3}{238}-\dfrac{3}{340}\)
\(\Leftrightarrow3A=\dfrac{3}{2\cdot5}-\dfrac{3}{5\cdot8}-\dfrac{3}{8\cdot11}-\dfrac{3}{11\cdot14}-\dfrac{3}{14\cdot17}-\dfrac{3}{17\cdot20}\)
\(\Leftrightarrow3A=\left(\dfrac{1}{2}-\dfrac{1}{5}\right)-\left(\dfrac{1}{5}-\dfrac{1}{8}\right)-\left(\dfrac{1}{8}-\dfrac{1}{11}\right)-\left(\dfrac{1}{11}-\dfrac{1}{14}\right)-\left(\dfrac{1}{14}-\dfrac{1}{17}\right)-\left(\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}-\dfrac{1}{5}+\dfrac{1}{8}-\dfrac{1}{8}+\dfrac{1}{11}-\dfrac{1}{11}+\dfrac{1}{14}-\dfrac{1}{14}+\dfrac{1}{17}-\dfrac{1}{17}+\dfrac{1}{20}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{20}\\ \Leftrightarrow3A=\dfrac{3}{20}\\ \Leftrightarrow A=\dfrac{1}{20}\)