Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta tách 2/5x7 = 2/5-2/7 tách những cái kia tương tự góp vào rồi tính
a) \(\left(\dfrac{11}{12}+\dfrac{11}{12.23}+\dfrac{11}{23.34}+...+\dfrac{11}{89.100}\right)+x=\dfrac{5}{3}\)
\(\Rightarrow\left(\dfrac{11}{1.12}+\dfrac{11}{12.23}+\dfrac{11}{23.34}+...+\dfrac{11}{89.100}\right)+x=\dfrac{5}{3}\)
\(\Rightarrow\left(1-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{34}+...+\dfrac{1}{89}-\dfrac{1}{100}\right)+x=\dfrac{5}{3}\)
\(\Rightarrow1-\dfrac{1}{100}+x=\dfrac{5}{3}\)
\(\Rightarrow x=\dfrac{5}{3}-1+\dfrac{1}{100}\)
\(\Rightarrow x=\dfrac{500}{300}-\dfrac{300}{300}+\dfrac{3}{300}\)
\(\Rightarrow x=\dfrac{203}{300}\)
b) \(\left(\dfrac{5}{11.16}+\dfrac{5}{16.21}+...+\dfrac{5}{19.24}\right)-x+\dfrac{1}{3}=\dfrac{7}{3}\)
=>\(\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{19}-\dfrac{1}{24}\right)-x=\dfrac{7}{3}-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{11}-\dfrac{1}{24}-x=2\)
\(\Rightarrow-x=2-\dfrac{1}{11}+\dfrac{1}{24}\)
\(\Rightarrow-x=\dfrac{528}{264}-\dfrac{24}{264}+\dfrac{11}{264}\)
\(\Rightarrow x=\dfrac{515}{264}\)
c) Câu hỏi của Đàm Chu Hữu An - Toán lớp 6 - Học toán với OnlineMath
A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)
=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)
=2.(1-1/101)
=2.(101/101-1/101)
=2.100/101
200/101
B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)
=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)
=2.(1/1+1/101)
=2.(101/101+1/101)
=2.102/101
=204/101
mình ghi nhầm nên các bạn cứ hết hai phân số là một câu nhé ví dụ như \(\dfrac{-5}{8}\):\(\dfrac{15}{4}\)
\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=2.\dfrac{3}{16}\)
\(A=\dfrac{3}{8}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(B=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(B=\dfrac{1}{3}-\dfrac{1}{111}\)
\(B=\dfrac{12}{37}\)
\(\dfrac{a}{b}=\dfrac{3^4\cdot2^2\cdot\left(2-1\right)}{3^5\cdot\left(3^2-5\right)}=\dfrac{2^2}{3}\cdot\dfrac{1}{4}=\dfrac{1}{3}\)
\(\dfrac{c}{d}=\dfrac{5^3\left(7-2\right)}{5^3\left(7-4\right)}=\dfrac{5}{3}\)
Do đó: a/b<c/d
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-1\right)\)
\(=\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.1=\dfrac{5}{9}\)
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}.\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-\dfrac{26}{26}\right)\)
=\(\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.\left(\dfrac{7}{7}\right)\)
=\(\dfrac{5}{9}.1\)
\(=\dfrac{5}{9}\)
D = \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\)
= \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)
= \(\dfrac{1}{5}-\dfrac{1}{9}=\dfrac{2004}{10045}\)
C = \(\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\)
= \(\dfrac{10}{5}\left(\dfrac{5}{7.12}+\dfrac{5}{12.17}+\dfrac{5}{17.22}+...+\dfrac{5}{502.507}\right)\)
= \(\dfrac{10}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+....+\dfrac{1}{502}-\dfrac{1}{507}\right)\)
= \(\dfrac{10}{5}\left(\dfrac{1}{5}-\dfrac{1}{507}\right)\)
= \(\dfrac{10}{5}.\dfrac{502}{2535}\)
= \(\dfrac{1000}{3549}\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{2}-\dfrac{3}{5}x+\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7}{10}x\)
=>3/5x=-4
hay x=-4:3/5=-20/3
b: \(\Leftrightarrow4x-6-9=5-3x-2\)
=>4x-15=-3x+3
=>7x=18
hay x=18/7
2) Tinh nhanh:
a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)
= \(\dfrac{5}{598}\)
b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)
\(\dfrac{10}{3\cdot7}-\dfrac{5}{7\cdot12}-\dfrac{7}{12\cdot19}-\dfrac{5}{19\cdot24}\)
\(=\dfrac{10}{3\cdot7}-\left(\dfrac{1}{7}-\dfrac{1}{12}\right)-\left(\dfrac{1}{12}-\dfrac{1}{19}\right)-\left(\dfrac{1}{19}-\dfrac{1}{24}\right)\)
\(=\dfrac{10}{21}-\dfrac{1}{7}+\dfrac{1}{12}-\dfrac{1}{12}+\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{1}{24}\)
\(=\dfrac{10}{21}-\dfrac{3}{21}+\dfrac{1}{24}\)
\(=\dfrac{7}{21}+\dfrac{1}{24}=\dfrac{1}{3}+\dfrac{1}{24}=\dfrac{8}{24}+\dfrac{1}{24}=\dfrac{9}{24}=\dfrac{3}{8}\)