Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
A= 101-100+99-98+.......3-2+1
A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51
A = 101 - 100 + 99 - 98 + ....... 3 - 2 + 1
A = ( 101 - 100 ) + ( 99 - 98 ) + ... + ( 5 - 4 ) + ( 3 - 2 ) +1
A = 1 + 1 + ... + 1 + 1 + 1
A = 1 x 51
A = 51
=1.4.2.5.....98.101/2.3.3.4.....99.100
=(1.2.3.....97.98)(4.5.....100.101)/(2.3.....99)(3.4.....100)
=1.101/99.3
=101/297
Bạn tuấn anh có thể giải thích rõ cho mik vì sao bạn có thể ra dược bước 1ko?
Ta có:
\(M=\dfrac{100^{100}+1}{100^{99}+1}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)
\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\)
\(N=\dfrac{100^{101}+1}{100^{100}+1}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)
\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)
Mà: \(100^{101}>100^{100}\)
\(\Rightarrow100^{101}+100>100^{100}+100\)
\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)
\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)
\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)
\(\Rightarrow N< M\)
Tính phần tử số:
101+100+99+...+2+1
=\(\dfrac{\left(101+1\right).101}{2}\)=5151
Phần mẫu số:
101-100+99-98+...+2-1+1
=1+1+...+1+1 ( 51 số 1 )
= 51
Thay vào biểu thức, ta có:
\(\dfrac{5151}{51}\)=101
Chúc bạn học tốt nhé :))!!
Cảm ơn nha