Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x}{-2}=\dfrac{1}{-2}=\dfrac{-18}{y}=\dfrac{z}{-24}\)
=>x=1; y=36; z=12
\(\frac{27}{4}=\frac{-x}{3}=>x=-\frac{81}{4}\notinℤ\)
\(^{y^2=\frac{4}{9}=\left(\frac{2}{3}\right)^2=>y=\pm\frac{2}{3}\notinℤ}\)
\(\frac{27}{4}=\frac{\left(z+3\right)}{-4}=\left(z+3\right)=-27=\left(-3\right)^3=>z+3=-3=>z=-6\)
\(+)|t|-2=-54=>|t|=-52\)(vô lí)
\(+)|t|-2=54=>|t|=56=>t=\pm56\)
-x/3=24/4=6
=>x=-18
3/y2=6
=>y2=1/2
hay \(y=\pm\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\left(z+3\right)^3}{-4}=6\)
=>(z+3)3=-24
\(\Leftrightarrow z+3=-\sqrt[3]{24}\)
hay \(z=-\sqrt[3]{24}-3\)
||t|-2|/8=6
=>||t|-2|=48
=>|t|-2=48
=>t=50 hoặc t=-50
Ta có :
\(-\dfrac{24}{-6}=\dfrac{x}{3}\)
\(\Rightarrow x=\dfrac{-24\cdot3}{-6}=12\)
=> TA CÓ :
\(\dfrac{12}{3}=\dfrac{4}{y^2}\)
\(\Rightarrow y^2=\dfrac{4\cdot3}{12}=1\)
\(\Rightarrow y=\pm1\)
=> Ta có :
\(\dfrac{4}{1}=\dfrac{z^3}{-2}\)
\(\Rightarrow z^3=\dfrac{4\cdot\left(-2\right)}{1}=-8\)
\(\Rightarrow z=-2\)
Vậy x= 12 ; y = \(\pm1\) ;z=-2
Giải:
a) \(\dfrac{12}{16}=\dfrac{-x}{4}=\dfrac{21}{y}=\dfrac{z}{80}\)
\(\Rightarrow x=\dfrac{12.-4}{16}=-3\)
\(\Rightarrow y=\dfrac{16.21}{12}=28\)
\(\Rightarrow z=\dfrac{12.80}{16}=60\)
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)\) =0
\(\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(x.\left(\dfrac{1}{3}+\dfrac{2}{5}\right)\) \(=0+\dfrac{2}{5}\)
\(x.\dfrac{11}{15}\) \(=\dfrac{2}{5}\)
x \(=\dfrac{2}{5}:\dfrac{11}{15}\)
x \(=\dfrac{6}{11}\)
c) (2x-3)(6-2x)=0
⇒2x-3=0 hoặc 6-2x=0
x=3/2 hoặc x=3
d) \(\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-2}{3}-\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-13}{6}\)
\(2x-5=\dfrac{-13}{6}:\dfrac{1}{3}\)
\(2x-5=\dfrac{-13}{2}\)
\(2x=\dfrac{-13}{2}+5\)
\(2x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:2\)
\(x=\dfrac{-3}{4}\)
e) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}:2\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{8}\) hoặc \(\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-1}{8}\)
\(x=\dfrac{11}{12}\) hoặc \(x=\dfrac{5}{12}\)
a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)
b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)
c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)
\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
a. \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}.\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\)
\(\dfrac{1}{2}-\dfrac{13}{12}\le x\le\dfrac{1}{24}.0\) ( lười viết nên điền kết quả luôn )
\(\dfrac{-7}{12}\le x\le0\)
\(0,5833...\le x\le0\)
Vì \(x\in Z\)\(\Rightarrow x\in\left\{0\right\}\)
Vậy...
b. \(-4\dfrac{1}{3}\left(\dfrac{1}{2}+\dfrac{1}{6}\right)\le x\le\dfrac{-2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}.\dfrac{3}{4}\right)\)
\(\dfrac{-26}{9}\le x\le\dfrac{1}{36}\)
\(-2,8888...\le x\le0,277...\)
Vì \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)
Vậy ...
\(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>\(\left\{{}\begin{matrix}x=3\cdot4=12\\y^2=4:4=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)