K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

\(D=\frac{\left(-1\right).\left(-1\right)}{1.2}.\frac{\left(-2\right).\left(-2\right)}{2.3}...\frac{\left(-101\right).\left(-101\right)}{101.102}\)

\(=\frac{\left(-1\right)\left(-1\right)\left(-2\right)\left(-2\right)...\left(-101\right)\left(-101\right)}{1.2.2.3...101.102}\)

\(=\frac{\left[\left(-1\right)\left(-2\right)...\left(-101\right)\right].\left[\left(-1\right).\left(-2\right)...\left(-101\right)\right]}{\left(1.2...101\right).\left(2.3...102\right)}\)

\(=\left(-1\right).\frac{-1}{102}\)

\(=\frac{1}{102}\)

Vì \(\frac{1}{102}>\frac{-1}{100}\)

Vậy\(D>\frac{-1}{100}\)

24 tháng 3 2018

*\(\frac{x}{200}\)=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\)....\(\frac{99^2}{99.100}\)

=>\(\frac{x}{200}\)=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{99}{100}\)

=>\(\frac{x}{200}\)=\(\frac{1}{100}\)

=>100x=200

=>x=2

9 tháng 5 2019

Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.

Cách 1 - Ta có :

\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)

\(\Leftrightarrowđpcm\)

11 tháng 5 2019

~ Nguyệt ~:Đúng rồi nha em.

Anh nghĩ em nên trích ra các số quy luật, sau đó tính tổng rồi so sánh.

Như thế bài làm của em sẽ hay hơn.

1 tháng 7 2016

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)

\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)

\(A=\frac{1}{10}\)

\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)

\(B=\frac{1}{99}-\frac{1}{99}+1\)

\(B=1\)

1 tháng 7 2016

sorry nha Thiên Sứ đội lốt Ác Quỷ mk 5 - 6

4 tháng 4 2020

*) A=1+6+11+16+21+....+101

Dãy trên có: \(\left(101-1\right):5+1=21\)(số số hạng)

\(\Rightarrow A=\frac{\left(101+1\right)\cdot21}{2}=1071\)

*) Đặt C=\(1^2+2^2+3^2+....+98^2=1\cdot1+2\cdot2+3\cdot3+....+98\cdot98\)

\(\Rightarrow B-C=\left(1\cdot2+2\cdot3+3\cdot4+....+98\cdot99\right)-\left(1\cdot1+2\cdot2+3\cdot3+....+98\cdot98\right)\)

\(=\left(1\cdot2-1\cdot1\right)+\left(2\cdot3-2\cdot2\right)+\left(3\cdot4-3\cdot3\right)+.....+\left(98\cdot99-98\cdot98\right)\)

\(=1\left(2-1\right)+2\left(3-2\right)+3\left(4-3\right)+....+98\left(99-1\right)\)

\(=1\cdot1+2\cdot1+3\cdot1+....+98\cdot1\)

\(=1+2+3+....+98\)

\(=\frac{\left(98+1\right)\cdot98}{2}=4851\)

4 tháng 4 2020

A = 1 + 6 + 11 + 16 +21 +... + 101

Số chữ số của tổng A là :

( 101 - 1 ) : 5 + 1 = 21 (số)

Tổng A = 1 + 6 + ... + 101 = (101 + 1) . 21 : 2 = 1071

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

1 tháng 5 2018

2A=1+1/2+1/2^2+1/2^3+...+1/2^99

-A=    1/2+1/2^2+1/2^3+...+1/2^99+1/2^100

-------------------------------------------------------------------

A=1-1/2^100

A=2^100-1/2^100<1(dpcm)

1 tháng 5 2018

B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =

=1-1/2-1/2-1/3+.........+1/99-1/100

=1-1/100

=99/100 

vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2

21 tháng 5 2016

D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}\)

\(\frac{1}{3}và\frac{3}{4}\)

\(\frac{1}{3}=\frac{4}{12}\)

\(\frac{3}{4}=\frac{9}{12}\)

\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)

20 tháng 6 2016

Tính 3D, lấy 3D -D là đc 

26 tháng 2 2020

C=\(\frac{101+100+...+3+2+1}{101-100+...+3-2+1}\)

=\(\frac{\left(101+1\right).101:2}{\left(101-100\right)+...+\left(3-2\right)+1}\) (nhóm 2 số hạng ở MS thì sẽ có 51 nhóm và dư 1 số hang )

=\(\frac{102.101:2}{1+...+1+1}\) ( Ms có 51 số 1)

=\(\frac{51.101}{51}\)=101

D=\(\frac{3737.43-4343.37}{2+4+6+...+100}\)

= \(\frac{37.101.43-43.101.37}{2+4+6+..+100}\)

= \(\frac{0}{2+4+6+...+100}\)

=0

Tick mik nha, thks bạn