K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2022

a, Xét tam giác BEC và tam giác BDA có 

^EBC _ chung ; BC = AB 

Vậy tam giác BEC = tam giác BDA ( ch-gn ) 

b, Vì tam giác ABC cân tại B, nên BH đồng thời là đường pg 

Xét tam giác BEH và tam giác BDH có 

BH _ chung ; ^EBH = ^DBH 

Vậy tam giác BEH = tam giác BDH (ch-gn) 

=> EH = DH ( 2 cạnh tương ứng ) 

=> tam giác EHD cân tại H

c, Vì tam giác ABC cân tại B, nên BI là đường trung tuyến hay I là tđ AC 

mà tam giác ADC vuông tại D, I là tđ AC => DI = 1/2.AC 

17 tháng 8 2022

.

6 tháng 3 2018

A B C D E H I

XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)

    ^E=^D=\(90^0\)

      BC chung                =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)

     ^BCB=^EBC

=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD

ta lại có EB=DC mà AB=AC nên AD=AE

Xét \(\Delta AEI\)VÀ \(\Delta ADI\)

      AE=AD

      ^E=^D=\(90^0\)           =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)

        AI  chung                  =>^EAI=^DAI

XÉT \(\Delta ABH\)\(\Delta ACH\)

    AB=AC

    AH chung              =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

    ^EAI=^DAI           =>^AHB=^AHC

MÀ ^AHB  + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)

VẬY \(AH\perp BC=\left\{H\right\}\)

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC

loading...  loading...  loading...  

11 tháng 4 2023

Cảm ơn bạn rất nhiều

27 tháng 12 2019

Đề bài kiểu gì thế? Lê Thanh Thúy

27 tháng 12 2019

a) Xét 2 \(\Delta\) \(ABI\)\(DBI\) có:

\(AB=DB\left(gt\right)\)

\(\widehat{ABI}=\widehat{DBI}\) (vì \(BI\) là tia phân giác của \(\widehat{B}\))

Cạnh BI chung

=> \(\Delta ABI=\Delta DBI\left(c-g-c\right)\)

=> \(IA=ID\) (2 cạnh tương ứng).

b) Xem lại đề.

c) Theo câu a) ta có \(\Delta ABI=\Delta DBI.\)

=> \(\widehat{BAI}=\widehat{BDI}\) (2 góc tương ứng).

\(\widehat{BAI}=90^0\left(gt\right)\)

=> \(\widehat{BAI}=\widehat{BDI}=90^0.\)

Xét 2 \(\Delta\) vuông \(IAE\)\(IDC\) có:

\(\widehat{EAI}=\widehat{CDI}=90^0\)

\(IA=ID\left(cmt\right)\)

\(\widehat{AIE}=\widehat{DIC}\) (vì 2 góc đối đỉnh)

=> \(\Delta IAE=\Delta IDC\) (cạnh góc vuông - góc nhọn kề).

b) Vì \(BI\) là tia phân giác của \(\widehat{B}\left(gt\right)\)

=> \(BH\) là tia phân giác của \(\widehat{B}.\)

Theo câu c) ta có \(\Delta IAE=\Delta IDC.\)

=> \(AE=DC\) (2 cạnh tương ứng).

Ta có:

\(\left\{{}\begin{matrix}BA+AE=BE\\BD+DC=BC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\AE=DC\left(cmt\right)\end{matrix}\right.\)

=> \(BE=BC.\)

=> \(\Delta EBC\) cân tại B.

\(BH\) là đường phân giác (cmt).

=> \(BH\) đồng thời là đường cao của \(\Delta EBC.\)

=> \(BH\perp CE\left(đpcm\right).\)

Chúc bạn học tốt!

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE
Suy ra: AD=AE

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng

12 tháng 6 2020

d,Chứng minh AB+AC<BC+AH