Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)
^E=^D=\(90^0\)
BC chung =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)
^BCB=^EBC
=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD
ta lại có EB=DC mà AB=AC nên AD=AE
Xét \(\Delta AEI\)VÀ \(\Delta ADI\)
AE=AD
^E=^D=\(90^0\) =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)
AI chung =>^EAI=^DAI
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)
AB=AC
AH chung =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)
^EAI=^DAI =>^AHB=^AHC
MÀ ^AHB + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)
VẬY \(AH\perp BC=\left\{H\right\}\)
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
a) Xét 2 \(\Delta\) \(ABI\) và \(DBI\) có:
\(AB=DB\left(gt\right)\)
\(\widehat{ABI}=\widehat{DBI}\) (vì \(BI\) là tia phân giác của \(\widehat{B}\))
Cạnh BI chung
=> \(\Delta ABI=\Delta DBI\left(c-g-c\right)\)
=> \(IA=ID\) (2 cạnh tương ứng).
b) Xem lại đề.
c) Theo câu a) ta có \(\Delta ABI=\Delta DBI.\)
=> \(\widehat{BAI}=\widehat{BDI}\) (2 góc tương ứng).
Mà \(\widehat{BAI}=90^0\left(gt\right)\)
=> \(\widehat{BAI}=\widehat{BDI}=90^0.\)
Xét 2 \(\Delta\) vuông \(IAE\) và \(IDC\) có:
\(\widehat{EAI}=\widehat{CDI}=90^0\)
\(IA=ID\left(cmt\right)\)
\(\widehat{AIE}=\widehat{DIC}\) (vì 2 góc đối đỉnh)
=> \(\Delta IAE=\Delta IDC\) (cạnh góc vuông - góc nhọn kề).
b) Vì \(BI\) là tia phân giác của \(\widehat{B}\left(gt\right)\)
=> \(BH\) là tia phân giác của \(\widehat{B}.\)
Theo câu c) ta có \(\Delta IAE=\Delta IDC.\)
=> \(AE=DC\) (2 cạnh tương ứng).
Ta có:
\(\left\{{}\begin{matrix}BA+AE=BE\\BD+DC=BC\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\AE=DC\left(cmt\right)\end{matrix}\right.\)
=> \(BE=BC.\)
=> \(\Delta EBC\) cân tại B.
Có \(BH\) là đường phân giác (cmt).
=> \(BH\) đồng thời là đường cao của \(\Delta EBC.\)
=> \(BH\perp CE\left(đpcm\right).\)
Chúc bạn học tốt!
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
hay H nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(2)
Từ (1) và (2) suy ra A,H,M thẳng hàng
a, Xét tam giác BEC và tam giác BDA có
^EBC _ chung ; BC = AB
Vậy tam giác BEC = tam giác BDA ( ch-gn )
b, Vì tam giác ABC cân tại B, nên BH đồng thời là đường pg
Xét tam giác BEH và tam giác BDH có
BH _ chung ; ^EBH = ^DBH
Vậy tam giác BEH = tam giác BDH (ch-gn)
=> EH = DH ( 2 cạnh tương ứng )
=> tam giác EHD cân tại H
c, Vì tam giác ABC cân tại B, nên BI là đường trung tuyến hay I là tđ AC
mà tam giác ADC vuông tại D, I là tđ AC => DI = 1/2.AC
.