Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta\)ABC cân tại A
\(\widehat{A}\) = 100o
=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)
* Vì: BA = BD (gt)
=> \(\Delta\)BAD cân tại B.
Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)
\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)
\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)
Mà \(\Delta\)ABD cân
=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o
* Vì AC = CE (gt)
=> \(\Delta\)ACE cân tại C.
Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)
\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)
\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)
Mà \(\Delta\)ACE cân
=> \(\widehat{EAC}=\widehat{CEA}=70^O\)
* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)
Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)
\(\widehat{DAE}+70^O+70^O=180^O\)
\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)
\(\widehat{DAE}=40^O\)
mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda
a: Xét ΔDBA và ΔACE có
DB=AC
góc DBA=góc ACE(=góc B)
AB=CE
Do đó: ΔDBA=ΔACE
=>góc ADB=góc EAC
=>goc ADE=góc AED
góc A=120 độ
=>góc B=góc C=(180-120)/2=30 độ
=>góc AED=(180-30)/2=150/2=75 độ
góc ADE=góc AED=75 độ
=>góc DAE=180-75-75=30 độ
b: góc A=90 độ
=>góc B=góc C=45 độ
=>góc AED=(180-45)/2=135/2=67,5 độ
=>góc EAD=180-2*67,5=45 độ
c: góc A=60 độ
=>góc B=góc C=60 độ
=>góc AED=(180-60)/2=60 độ
=>góc EAD=60 độ
ΔABD cân tại B có = 50º nên = 70º
ΔACE cân tại C có = 50º nên = 70º
Answer:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow100^o+\widehat{C}+\widehat{B}=180^o\)
\(\Rightarrow2\widehat{B}=80^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=40^o\)
Ta có: Tam giác ACE cân tại C
Mà: \(\widehat{A}+\widehat{C}+\widehat{E}=180^o\)
\(\Rightarrow2\widehat{E}+40^o=180^o\)
\(\Rightarrow2\widehat{E}=140^o\)
\(\Rightarrow\widehat{E}=70^o\) (1)
Ta có: Tam giác ABD cân tại B
Mà: \(\widehat{A}+\widehat{B}+\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}+40^o=180^o\)
\(\Rightarrow2\widehat{D}=140^o\)
\(\Rightarrow\widehat{D}=70^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A}+\widehat{E}+\widehat{D}=180^o\)
\(\Rightarrow\widehat{A}+2.70^o=180^o\)
\(\Rightarrow\widehat{A}+140^o=180^o\)
\(\Rightarrow\widehat{A}=40^o\)
Vậy \(\widehat{DAE}=40^o\)
Vì tam giác ABC cân tại A => góc B = góc C
Xét tam giác ABC cân tại A: góc A + góc B + góc C = 180o ( đinh lý tổng ba góc trong một tam giác )
Thay : 100o + 2góc B = 180 độ
2gócB = 180 độ - 100 độ
2góc B = 80 độ
=> góc B = góc C = 40 độ
Vì CA = CE => tam giác CAE cân tại C
Xét tam giác ACE cân tại C , có :
góc C + góc CAE + góc AEC = 180 độ
Thay : 40 độ + 2góc AEC + 180 độ
2góc AEC = 180 độ - 40 độ
2góc AEC = 140 độ
=> góc AEC = gócCAE = 70 độ
Vì BA = BD => tam giác BAD cân tại B
Xét tam giác BAD cân tại B , có :
góc B + góc BAD + góc BDA = 180 độ
Thay : 40 độ + 2gócBAD =180 độ
2 góc BAD = 180 độ - 40 độ
2 góc BAD = 140 độ
=> góc BAD = góc BDA = 70 độ
Xét tam giác AED : góc DAE + góc AED + góc ADE = 180 độ
Thay : góc DAE + 70 độ + 70 độ = 180 độ
góc DAE = 180 độ - 70 độ - 70 độ
góc DAE = 40 độ
Vậy góc DAE = 40o
đừng tích ai nhá, tôi về mình giải cho, giờ mik phải đi học thêm
Vì \(\Delta ABC\)cân tại \(A\left(gt\right)\)
\(\Rightarrow\widehat{B}=\widehat{C}\)( tính chất tam giác cân )
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-100^0}{2}=\frac{80^0}{2}=40^0\)
Xét \(\Delta ABD\)có:
\(BD=BA\left(gt\right)\)
\(\Rightarrow\Delta ABD\)cân tại B
\(\Rightarrow\widehat{BAD}=\widehat{ADB}\)( tính chất tam giác cân )
\(\Rightarrow\widehat{BAD}=\widehat{ADB}=\frac{180^0-\widehat{B}}{2}\)
\(\Rightarrow\widehat{BAD}=\widehat{ADB}=\frac{180^0-40^0}{2}=\frac{140^0}{2}=70^0\)
\(\Rightarrow\widehat{ADB}=70^0\)
Hay \(\widehat{ADE}=70^0\)
Xét \(\Delta ADE\)có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{AED}=180^0\)( định lý tổng 3 góc trong 1 tam giác )
\(\Rightarrow\widehat{DAE}+70^0+70^0=180^0\)
\(\Rightarrow\widehat{DAE}+140^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0-140^0\)
\(\Rightarrow\widehat{DAE}=40^0\)
Vậy \(\widehat{DAE}=40^0\)
Ta có: ΔABC cân tại A.
Nên ∠B=C=\(\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
Ta có: BA=BD(gt)
nên ΔABD cân tại B.
Do đó: ∠ADB=∠DAB=\(\dfrac{180^0-\widehat{B}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
Chứng minh tương tự, ta được: ∠AEC=∠EAC=\(\dfrac{180^0-\widehat{B}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
Ta có: ∠AEC=∠ADB (hoặc ∠AED=∠ADE) (cùng bằng 700)
Do đó: ΔAED cân tại A.
Suy ra: ∠DAE=1800-2∠AED=1800-2.700=400