\(\Delta\)ABC cân tại A . BH\(\perp\)AC ( H
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

Bài này cũng easy thôi!

A B C K H D O ( Chú ý: AO cắt BC ở D)

Gọi O là giao điểm hai đường cao(CK và BH)

=> O là trực tâm.

Mà AD đi qua O

=> AD là đường cao

Lại có : ΔABC cân tại A

=> AD là đường phân giác của \(\widehat{A}\)(dpcm)

CHÚC BAN HỌC TỐT!

23 tháng 1 2018

A B C K H D

Xét \(\Delta ABH;\Delta ACK\) có :

\(\left\{{}\begin{matrix}AB=AC\\\widehat{AHB}=\widehat{AKC}\\\widehat{BAC}chung\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABH=\Delta ACK\left(ch-gn\right)\)

\(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)\(AH=AK\)

Ta có :

\(\left\{{}\begin{matrix}AH+HB=AB\\AK+KC=AC\end{matrix}\right.\)

\(AB=AC;AH=AK\)

\(\Leftrightarrow HB=KC\)

Xét \(\Delta KDB;\Delta HDC\) có :

\(\left\{{}\begin{matrix}HB=KC\\\widehat{DHC}=\widehat{DKB}\\\widehat{DBK}=\widehat{DCH}\end{matrix}\right.\)

\(\Leftrightarrow\Delta KDB=\Delta HDB\left(g-c-g\right)\)

\(\Leftrightarrow KD=DH\)

Xét \(\Delta ADB;\Delta ADC\) có :

\(\left\{{}\begin{matrix}AH=AK\\\widehat{AKD}=\widehat{AHD}\\KD=DK\end{matrix}\right.\)

\(\Leftrightarrow\Delta ADB=\Delta AHC\left(c-g-c\right)\)

\(\Leftrightarrow\widehat{BAD}=\widehat{DAC}\)

Mà AD nằm giữa AB và AC

\(\Leftrightarrow AD\) là tia phân giác của \(\widehat{BAC}\)

Ta có: \(\widehat{ABH}+\widehat{A}=90^0\)

\(\widehat{ACK}+\widehat{A}=90^0\)

Do đó: \(\widehat{ABH}=\widehat{ACK}\)

15 tháng 1 2017

A B C H K

15 tháng 1 2017

MÌnh vẽ nhầm hình

Cho mình vẽ lại

A B C H K

27 tháng 1 2021

Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!

A B C H E F

a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)

=> \(BH=HC\)

b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:

\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)

=> \(HE=HF\) => Tam giác HEF cân tại H

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak
17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H