Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=3\sqrt{3}\)
\(cosB=\frac{AB^2+BC^2-AC^2}{2AB.BC}=0\Rightarrow B=90^0\)
\(\Rightarrow C=30^0\)
\(BD=\frac{1}{3}BC=\sqrt{3}\)
Đặt \(AE=x\Rightarrow\left\{{}\begin{matrix}x+BE=AB=3\\BD^2+BE^2=x^2\end{matrix}\right.\)
\(\Rightarrow3+\left(3-x\right)^2=x^2\Leftrightarrow12-6x=0\Rightarrow x=2\)
\(\Rightarrow BE=3-x=1\)
\(\Rightarrow CE=\sqrt{BE^2+BC^2}=\sqrt{1+27}=2\sqrt{7}\)
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=2\sqrt{19}\)
Chu vi:
\(AB+AC+BC=14+2\sqrt{19}\)
\(cosC=\frac{BC^2+AC^2-AB^2}{2BC.AC}=-\frac{\sqrt{19}}{38}\)
\(\Rightarrow sinC=\sqrt{1-cos^2C}=\frac{5\sqrt{57}}{38}\)
\(\Rightarrow tanC=\frac{sinC}{cosC}=-5\sqrt{3}\)
a: Xét ΔBAI và ΔBDI có
BA=BD
\(\widehat{ABI}=\widehat{DBI}\)
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: \(\widehat{BAI}=\widehat{BDI}=90^0\)
hay ID\(\perp\)BC
b: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
=>BE=BC
c: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
Xét ΔBEC có AD//EC
nên AD/EC=BA/BE=BD/BC
=>BA/BE=BD/BC=1/2
=>BD=1/2BC
mà BA=1/2BC
nên \(\widehat{ABC}=60^0\)