Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi BI là phân giác trong góc ABC của tam giác ABC theo tính chất đường phân giác trong , ta có:
\(\frac{AI}{AB}=\frac{CI}{BC}=\frac{AI+CI}{AB+BC}=\frac{AC}{AB+BC}\)
mặt khác:
tan\(\frac{gócABC}{2}=tan\) góc ABI=\(\frac{IA}{AB}\Rightarrow tan\frac{gócABC}{2}=\frac{AC}{AB+AC}\left(đpcm\right)\)
mk giải như vậy đúng ko?????????????????
![](https://rs.olm.vn/images/avt/0.png?1311)
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ
mà góc CDB+ góc ACB=90 độ
suy ra góc DBC =90 độ
suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)
Áp dụng hệ thức lượng vào tam giác DBC ta có:
1/BC^2+1/BD^2=1/AB^2( ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
Hình bạn tự vẽ nha!
Ta có: tan \(\frac{ABC}{2}\) = \(\frac{AD}{AB}\) (1)
Xét tam giác ABC có: BD là đường p/g ứng với AC (D \(\in\) AC)
\(\Rightarrow\) \(\frac{AD}{AB}=\frac{DC}{BC}\) (tính chất đường phân giác của tam giác)
Mặt khác: \(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\) (tính chất dãy tỉ số bằng nhau) (2)
Từ (1) và (2) \(\Rightarrow\) tan \(\frac{ABC}{2}=\frac{AC}{AB+BC}\) (đpcm)
Chúc bạn học tốt!