\(\Delta ABC\) vuông tại A, AH⊥BC (H ∈ BC ) CM: BC + AH > AB + AC

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Ta có: \(\widehat{CAE}+\widehat{BAE}=90^0\)

\(\widehat{HAE}+\widehat{BEA}=90^0\)

mà \(\widehat{BAE}=\widehat{BEA}\)

nên \(\widehat{CAE}=\widehat{HAE}\)

Xét Δ​AHE và Δ​AKE

AE chung

\(\widehat{EAH}=\widehat{EAK}\)

AH=AK

Do đó:Δ​AHE=Δ​AKE

b: KE<CE

nên CE=CH-HE

nên KE<CH-HE

và CE=CB-BE

nên CH-HE<CB-BE

mà BA=BE

và HE=AH

nên BC+AH>AB+AC

19 tháng 5 2020

A B C H

                                 a)              XÉT tam giác HAC (\(\widehat{H}\)=\(90^O\)) CÓ

                                    AH là đường vuông góc của hình xiên AC

                                  \(\Rightarrow AC>AH\) (quan hệ giữa đường vuông góc và hình xiên trong tam giác)      (đpcm)

                            b)                    Xét tam giác HAB (\(\widehat{H}=90^o\)) có

                                          AH là đường vuông góc của đường xiên AB

                                   \(\Rightarrow AB>AH\)(quan hệ giữa đường vuông góc và hình xiên)          (đpcm)

30 tháng 6 2020

Phần c, d thì mk nghĩ sau nhé! Hơi khó

30 tháng 6 2020

a) Xét 2 tam giác vuông ΔABH và ΔACH ta có:

C.h AB = AC (GT)

AH: cạnh chung

=> ΔABH = ΔACH (c.h - c.g.v)

b) ΔABC cân tại A (GT)

Lại có: AH là đường cao của ΔABC

=> AH là đường trung tuyến của ΔABC

=> H là trung điểm của BC

\(\Rightarrow BH=\frac{1}{2}BC=\frac{1}{2}.12=6\left(cm\right)\)

ΔABH vuông tại H. Áp dụng định lí Pitago ta có:

AB2 = AH2 + BH2

=> AH2 = AB2 - BH2 = 102 - 62 = 100 - 36 = 64

=> AH = 8 (cm)

c) Có: ΔABH = ΔACH (cmt)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng) (1)

Hay: \(\widehat{EAH}=\widehat{CAH}\)

Có: EH // AC (GT)

\(\Rightarrow\widehat{EHA}=\widehat{CAH}\) (so le trong) (2)

Từ (1) và (2) \(\Rightarrow\widehat{EAH}=\widehat{EHA}\)

=> ΔAEH cân tại E

d/

a: Xét ΔABK có BK=BA

nên ΔBAK cân tại B

b: \(\widehat{BAH}+\widehat{B}=90^0\)

\(\widehat{ACB}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAH}=\widehat{ACB}\)

Ta có: \(\widehat{HAK}+\widehat{BKA}=90^0\)

\(\widehat{IAK}+\widehat{BAK}=90^0\)

mà \(\widehat{BAK}=\widehat{BKA}\)

nên \(\widehat{HAK}=\widehat{IAK}\)