Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong \(\Delta\)ABC có: ^A = ^B +2.^C => ^A > ^B và ^A > ^C => BC là cạnh lớn nhất trong tam giác ABC.
+) Xét trường hợp: AB < AC < BC. Khi đó; ta đặt: AB = a; AC = a+1; BC = a+2 (Với a thuộc N*)
Trên cạnh BC lấy điểm D sao cho ^BAD = ^ACB, hay ^A1 = ^C (theo hình vẽ)
Xét \(\Delta\)ABC và \(\Delta\)DBA có: ^A1 = ^C; ^B chung => \(\Delta\)ABC ~ \(\Delta\)DBA (g.g)
=> \(\frac{AB}{DB}=\frac{BC}{BA}\)=> AB2 = BC.BD hay a2 = (a+2).BD (*)
Ta thấy: ^BAC = ^B + 2.^C; ^BAC = ^A1 + ^A2 = ^C + ^A2 => ^B + 2.^C = ^C + A2 <=> ^B + ^C = ^A2 (1)
Do ^D1 là góc ngoài \(\Delta\)BAD nên ^D1 = ^A1 + ^B = ^B + ^C (Vì ^C = ^A1) (2)
Từ (1) và (2) => ^D1 = ^A2 => \(\Delta\)ACD cân tại C => AC= CD = a+1 => BD = BC - CD = BC - AC = a+2 - a - 1 = 1
Thay BD = 1 vào (*) ta có:
\(a^2=\left(a+2\right).1\Leftrightarrow a^2-a-2=0\Leftrightarrow a^2+a-2a-2=0\)
\(\Leftrightarrow a\left(a+1\right)-2\left(a+1\right)=0\Leftrightarrow\left(a+1\right)\left(a-2\right)=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=2\end{cases}}\)
=> a = 2. (Loại TH a = -1 vì a thuộc N*) => a+1 = 3; a+2 = 4
Hay AB = 2; AC = 3; BC = 4
+) Xét trường hợp AC < AB < BC. Đặt AC = a; AB = a+1; BC = a+2
Chứng ming tương tự TH 1; ta có: AB2 = BC.BD; BD = BC - CD = BC - AC = a+2 - a = 2
Hay \(\left(a+1\right)^2=2\left(a+2\right)\)
\(\Leftrightarrow a^2+2a+1=2a+4\Leftrightarrow a^2=3\Leftrightarrow a=\pm\sqrt{3}\)(loại vì a thuộc N*)
Vậy độ dài 3 cạnh trong \(\Delta\)ABC t/m đề là AB = 2; AC = 3; BC = 4.
Trên cạnh BC lấy điểm D sao cho CD=CA.Ta có
Theo đề bài ta có
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
Đặ BC=a ; AB=c ;Ac=b
;
Do các cạnh của tam giác ABC là ba STN liên tiếp nên a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
b) Dễ rồi : kẽ đường cao AH xong rồi tính nhé
**** hộ mình