Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHB và tam giác AHC có : AH chung
góc AHB = góc AHC = 90 do ...
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác AHB = tam giác AHC (câu a)
=> góc BAH = góc CAH (đn)
có HD // AC (gt) => góc DHA = góc HAC (slt)
=> góc DHA = góc DAH
=> tam giác DAH cân tại D (tc)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
Ta có: ΔHDA vuông tại H
mà HD là đường trung tuyến
nên DA=DH
c: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tai G
Do đó: G là trọng tâm
=>B,G,E thẳng hàng
Bạn tham khảo tại đây nhé:
Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath
Chúc bạn học tốt!
a) Xét tam giác AHB & AHC có:
- Góc AHB = góc AHC
- AH là cạnh chung
- AB=AC (gt)
=> tam giác AHB=AHC( cạnh huyền - cạnh góc vuông)
a) Xét hai tam giác vuông ΔAHB và ΔAHC ta có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC ( cạnh huyền - cạnh góc vuông )
b) Ta có : ΔAHB = ΔAHC ( theo phần a )
=> Góc BAH = Góc CAH ( hai góc tương ứng ) (*)
Ta lại có: HD // AC ( GT )
=> Góc DHA = Góc CAH ( hai góc so le trong ) (**)
Từ (*) và (**) => Góc DHA = Góc BAH
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH ( theo phần a)
⇔ BH =HC ( hai cạnh tương ứng )
⇒ AH là trung tuyến ΔABC tại A (***)
Ta có : DH // AC ⇒ ∠DHB = ∠ACB ( hai góc đồng vị )
Mà ΔABC cân tại A ( GT )
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
=> DB =DH
Lại có AD = DH ( theo phần b ) => DA = DB
=> CD là trung tuyến ΔABC (****)
Từ (***) và (****) ta có:
AC cắt CD tại G => G là trọng tâm ΔABC
Mà CE = EA => BE là trung tuyến ΔABC tại B
=> BE qua G => B, G, E thẳng hàng
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
bạn ơi cảm phiền bạn vẽ hình cho mình luon đc không ạ?