\(x^4-5x^2+a\) chia hết cho đa thức \(x^2-3x+2\) thì
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

Ta có: x4 - 5x + a = (x2 - 3x + 2)(x2 + 3x + 2) + a - 4

Để đây là phép chia hết thì phần dư phải = 0 hay

a - 4 = 0 <=> a = 4

13 tháng 11 2016

Nghe đồn là 4

14 tháng 11 2016

Ta thực hiện phép chia :

x - 5x + a x - 3x + 2 4 2 2 x 2 x-3x+2x 4 3x -7x 3 3 2 2 +3x 3x -9x +6x - - 3 2 2x -6x +a +2 2 2x -6x +4 2 a - 4 -

Vậy để đây là phép chia hết thì a - 4 = 0 hay a = 4.

27 tháng 11 2022

a: \(\Leftrightarrow k^3+3k^2-k^2+9+6⋮k+3\)

=>\(k+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(k\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)

b: \(\Leftrightarrow x^4-3x^3+3x^2+ax+b⋮3x+4\)

=>\(x^4+\dfrac{4}{3}x^3-\dfrac{13}{3}x^3-\dfrac{52}{9}x^2+\dfrac{79}{9}x^2+\dfrac{316}{27}x+\left(a-\dfrac{316}{27}\right)x+\dfrac{4}{3}\left(a-\dfrac{316}{27}\right)-\dfrac{4}{3}\left(a-\dfrac{316}{27}\right)+b⋮3x+4\)

=>a-316/27=0 và b=0

=>a=316/27 và b=0

 

19 tháng 10 2019

a) ta có (2n2-n+2)/(2n+1)=n-1(dư 3)

vậy muốn 2n2-n+2 chia hết cho 2n+1 thì 2n+1ϵƯ(3)

mà Ư(3)={-3;-1;1;3}

nên

2n+1=-3 và 2n+1=-1 và 2n+1=1 và 2n+1=3

=> 2n=-4 và 2n=-2 và 2n=0 và 2n=2

=> n=-2 và n=-1 và n=0 và n=1

vậy nϵ{-2;-1;0;1}

b) ta có x3+x2-x+a/(x+1)2=x-1(dư -x2-2x+a)

\(x^2-2x+a-\left(-x^2-2x-1\right)=a+1\)

và muốn \(x^3+x^2-x+a\) chia hết cho \(\left(x+1\right)^2\)thì a+1=0

=> a=-1

19 tháng 7 2020

Bài 1 :

b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=x\left(x+3\right)\left(x-2\right)\)

Bài 2 :

a, Để \(x^3+3x^2+3x-2⋮x+1\)

<=> \(x^3+1+3x^2+3x-3⋮x+1\)

<=> \(\left(x+1\right)^3-3⋮x+1\)

Ta thấy : \(\left(x+1\right)^3⋮x+1\)

<=> \(-3⋮x+1\)

<=> \(x+1\inƯ_{\left(3\right)}\)

<=> \(x+1=\left\{1,-1,3,-3\right\}\)

<=> \(x=\left\{0,-2,2,-4\right\}\)

Vậy ...

b, Để \(2x^2+x-7⋮x-2\)

<=> \(2x^2-8x+8+9x-15⋮x-2\)

<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)

Ta thấy : \(2\left(x-2\right)^2⋮x-2\)

<=> \(9x-15⋮x-2\)

<=> \(9x-18+3⋮x-2\)

Ta thấy : \(8\left(x-2\right)⋮x-2\)

<=> \(3⋮x-2\)

<=> \(x-2\inƯ_{\left(3\right)}\)

<=> \(x-2=\left\{1,-1,3,-3\right\}\)

<=> \(x=\left\{3,1,5,-1\right\}\)

Vậy ...