\(0,\left(25\right)\) dưới dạng phân số, ta làm như sau :

      

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

\(0,\left(34\right)=0\left(01\right).34=\dfrac{1}{99}\)

\(0,\left(5\right)=0,\left(1\right).5=\dfrac{1}{9}.5=\dfrac{5}{9}\)

\(0,\left(123\right)=0,\left(001\right).123=\dfrac{1}{999}.123=\dfrac{123}{999}=\dfrac{41}{333}\)

10 tháng 6 2017

\(\dfrac{34}{99};\dfrac{5}{9};\dfrac{41}{333}.\)

10 tháng 10 2017

Ta có :

\(0,0\left(8\right)=\dfrac{1}{10}.0,\left(8\right)=\dfrac{1}{10}.0,\left(1\right).8=\dfrac{1}{10}.\dfrac{1}{9}.8=\dfrac{4}{45}\)

\(0,1\left(2\right)=0,1+0,0\left(2\right)\)

\(=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(2\right)=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(1\right).2\)

\(=\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{9}.2=\dfrac{9}{90}+\dfrac{2}{90}=\dfrac{11}{90}\)

\(0,1\left(23\right)=0,1+0,0\left(23\right)=\dfrac{1}{10}+\dfrac{1}{10}.0,23\)

\(=\dfrac{1}{10}+\dfrac{1}{10}.0,\left(01\right).23\)

\(\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{99}.23=\dfrac{99}{990}+\dfrac{23}{990}=\dfrac{122}{990}=\dfrac{61}{495}\)

10 tháng 6 2017

\(\dfrac{34}{99};\dfrac{5}{9};\dfrac{41}{333}.\)

23 tháng 5 2017

a) Vì \(0,\left(3\right)=\dfrac{3-0}{9}=\dfrac{3}{9}=\dfrac{1}{3}\)\(-0,4\left(2\right)=-\dfrac{42-4}{90}=-\dfrac{38}{90}=-\dfrac{19}{45}\) nên:

\(0,\left(3\right)+3\dfrac{1}{3}-0,4\left(2\right)=\dfrac{1}{3}+\dfrac{10}{3}-\dfrac{19}{45}=\dfrac{11}{3}-\dfrac{49}{45}\)

\(=\dfrac{165-19}{45}=\dfrac{146}{45}\)

b) Vì \(0,\left(5\right)=\dfrac{5-0}{9}=\dfrac{5}{9}\)\(0,\left(2\right)=\dfrac{2-0}{9}=\dfrac{2}{9}\) nên:

\(\left[0,\left(5\right).0,\left(2\right)\right]:\left(3\dfrac{1}{3}:\dfrac{33}{25}\right)=\left(\dfrac{5}{9}.\dfrac{2}{9}\right):\left(\dfrac{10}{3}.\dfrac{25}{33}\right)=\dfrac{10}{81}:\left(\dfrac{110.25}{33}\right)\)

\(=\dfrac{10}{81}.\dfrac{33}{110.25}=\dfrac{3}{81.25}=\dfrac{1}{27.25}=\dfrac{1}{675}\)

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

16 tháng 9 2018

a) \(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)

<=>\(\left[{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)

phần b, c tương tự

27 tháng 10 2018

a) = 4. 5/4 + 25. [ 3/2 : (5/4)2] : 27/8

= 5 + 25. 12/5: 27/8

=5 +160/9

=205/9

b) = 8+ 3- 1+2.8

=11-1+2.8

=10+2.8

=10+ 16

= 26

c)= 3+1+1/4:2

= 4+ 0,125

=4,125

8 tháng 1 2021

1)(-1/2)^2:1/4-2.(-1/2)^3+căn 4

=1/4:1/4-2.-1/8+2

= 1-(-1/4)+2

=1+1/4+2=13/4

2) 3-(-6/7)^0+căn 9 :2

= 3-1+3:2

=3-1+3/2=7/2

3) (-2)^3+1/2:1/8-căn 25 + |-64|

= -8+4-5+64= 55

4) (-1/2)^4+|-2/3|-2007^0

= 1/16+2/3-1

= -13/48

5) = 178/495:623/495-17/60:119/120

= 2/7-2/7=0

6) [2^3.(-1/2)^3+1/2]+[25/22+6/25-3/22+19/25+1/2]

= [-1+1/2]+[(25/22-3/22)+(6/25+19/25)+1/2]

= -1/2+[1+1+1/2]

= -1/2+5/2=2

Mấy cái dấu chấm đó là  nhân nha bn!

 

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)

\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)

Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :

\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)

b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:

\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)

\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)

d) \((2x-1)^3=-27=(-3)^3\)

\(\Rightarrow 2x-1=-3\)

\(\Rightarrow 2x=-2\Rightarrow x=-1\)

e) \((x-2)^2=1=1^2=(-1)^2\)

\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)

f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)

\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)

g) \((x-1)^2=(x-1)^6\)

\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)

\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)

\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x=\left\{0;1;2\right\}\)

28 tháng 7 2017

\(\left[0,\left(32\right).1,\left(5\right)-0,\left(25\right)\right].\dfrac{11}{83}\)

\(=\left[\dfrac{32}{99}.\left(1+\dfrac{5}{9}\right)-\dfrac{25}{99}\right].\dfrac{11}{83}\)

\(=\left[\dfrac{32}{99}.\dfrac{14}{9}-\dfrac{25}{99}\right].\dfrac{11}{83}\)

\(=\left[\dfrac{448}{891}-\dfrac{25}{99}\right].\dfrac{11}{83}\)

\(=\dfrac{223}{891}.\dfrac{11}{83}\)

\(=\dfrac{223}{6723}\)