K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi Violympic Toán lớp 8 vòng 15 năm 2016 - 2017

Bài 1: Đi tìm kho báu

Câu 1: Trung bình cộng của năm số là 54. Trung bình cộng của hai số đầu tiên là 48. Giá trị trung bình cộng của ba số cuối là

A) 56

B) 55

C) 58

D) 57

Câu 2: Chiều dài một cạnh góc vuông của tam giác vuông là 5cm, chiều dài của cạnh huyền là 13cm thì diện tích tam giác vuông đó là ... cm2

Câu 3: Chữ số tận cùng của số 1919 + 9999 là:

A) 9

B) 8

C) 1

D) 2

Câu 4: Hình thang ABCD ( AD//BC, AD > BC) có diện tích là 164cm2. Biết đường cao của hình thang là 8cm, AB = 10cm, CD = 17cm. Khi đó độ dài của cạnh BC là:

A) 11cm

B) 13cm

C) 10cm

D) 12cm

Câu 5: Biểu thức rút gọn của A với (x ≠ 0; x - 2Y + 2 ≠ 0) là

A)

B)

C)

D)

Bài 2: Mười hai con giáp

Câu 1: 

Câu 2: Cho hình bình hành ABCD. Một đường thẳng qua A cắt đoạn thẳng DB, DC theo thứ tự ở E và G. Biết DE/EB = 1/2 thì tỉ số DG/DC là:...

Câu 3: Hai cạnh bên AB và CD của hình thành ABCD kéo dài cắt nhau tại O. Biết AB = 10cm, CD = 15cm, OB = 8cm khi đó độ dài OC là... cm

Câu 4: Cho tam giác ABC có E là trung điểm của AC, D là trung điểm của BC. Gọi P là giao điểm của BE và AD. Biết AD = 18cm thì độ dài PD là... cm

Câu 5:

Câu 6:

Câu 7:

Câu 8:

Câu 9: Cho x và y thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức P = (1 + x4) (1 + y4) + 4(xy - 1)(3xy - 1) =...

Câu 10: Tam giác ABC có diện tích là 20cm2 và cạnh BC là 8cm. Đường cao tương ứng vối cạnh BC có độ dài là... cm

Bài 3: Đừng để điểm rơi

Câu 1: Cho B là một số khác 0, nếu A là 36% của B và C là 40% của B thì tỉ số A/C có giá trị là...

Câu 2: Số nghiệm của phương trình 8x - 3 = 8x + 2017 là...

Câu 3: Nếu xy = 2 và x2 + y2 = 5 thì x/y + y/x có giá trị là...

Câu 4: Nghiệm x > 0 của phương trình x2 - 6x + 9 = 49 là x =...

Câu 5: Biết tổng các góc ngoài của đa giác lồi n cạnh bằng hai lần tổng các góc trong thì giá trị của n là....

Câu 6: Cho tam giác ABC có AB = 8cm, AC = 15cm và BC = 17cm. Khi đó độ dài đường cao AH là... cm

Câu 7: Đa thức x4 + ax2 + 1 chia hết cho đa thức x2 + x + 1. Khi đó giá trị của a =...

Câu 8: Số nguyên dương x để biểu thức có giá trị là một số nguyên là...

Câu 9:

 

 

 

 

 

 

 

 

 

 

 

Đáp án đề thi Violympic Toán lớp 8 vòng 15 năm 2016 - 2017

Bài 1: Đi tìm kho báu

Câu 1: C
Câu 2: 30
Câu 3: B
Câu 4: C
Câu 5: A

Bài 2: Mười hai con giáp

Câu 1: 1

Câu 2: 1/2

Câu 3: 12

Câu 4: 6

Câu 5: 1/6

Câu 6: 3

Câu 7: -1/2

Câu 8: 5

Câu 9: 4

Câu 10: 5

Bài 3: Đừng để điểm rơi

Câu 1: 9/10

Câu 2: 0

Câu 3: 5/2

Câu 4: 10

Câu 5: 3

Câu 6: 120/17

Câu 7: 1

Câu 8: 5

Câu 9: -15

 

có một số câu ko nhìn thấy các bạn thông cảm giùm

0
Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

Câu 1.Viết công thức để tính tổng S=1.2.3+2.3.5+...+n.(n+1).(2n+1)    Câu 2. Số nào lớn hơn:  A=(102010+1): (102011+1)  hay  B=(102011+1): (102012+1)  Câu 3. Cho 102+112+122=132+142 . Hỏi ngoài 5 số trên còn có những bộ 5 số nào có tính chất như vậy không?           Câu 4. Tìm a,b,c thỏa mãn đẳng thức:a2- 2a+b2+4b+4c2-4c+6=0    Câu 5. Cho a+b=1. Tính giá trị Q=2(a3+b3) – 3.( a2+b2).   Câu 6. Phân tích...
Đọc tiếp

Câu 1.Viết công thức để tính tổng S=1.2.3+2.3.5+...+n.(n+1).(2n+1)    

Câu 2. Số nào lớn hơn:  A=(102010+1): (102011+1)  hay  B=(102011+1): (102012+1)  

Câu 3. Cho 102+112+122=132+142 . Hỏi ngoài 5 số trên còn có những bộ 5 số nào có tính chất như vậy không?           

Câu 4. Tìm a,b,c thỏa mãn đẳng thức:a2- 2a+b2+4b+4c2-4c+6=0    

Câu 5. Cho a+b=1. Tính giá trị Q=2(a3+b3) – 3.( a2+b2).   

Câu 6. Phân tích thành nhân tử: P=x.(x+1).(x+2).(x+3)+1   

Câu 7. Tìm số a để đa thức f(x)= 2x3-3x2+x+a chia hết cho đa thức x+2

Câu 8. Tìm giá trị nhỏ nhất của biểu thức: M=(x-1)(x+2)(x+3)(x+6)   

Câu 9. Biết rằng a2+b2=c2+d2=2010 và a.c+b.d=0.Tính tổng a.b+c.d                       

Câu 10. Gọi A là tập hợp các số tự nhiên n sao cho -17 xn+1y6 chia hết cho   4x5yn .Vậy A có bao nhiêu phần tử.            

Câu 11. Một hình vuông  có diện tích bằng  diện tích của hình chữ nhật có các cạnh 25 cm và 9cm thì cạnh của hình vuông đó bằng?                       

Câu 12. Cho tam giác ABC có AB=18 cm;BC= 21 cm.Trên tia đối của tia AB lấy điểm M sao cho AM=6 cm.Đường thẳng qua M song song với BC cắt AC tại N. Độ dài đoạn thẳng MN bằng bao nhiêu? 

Câu 13. Nếu Nếu mỗi cạnh của hình chữ nhật giảm 10% thì diện tích của hình chữ nhật giảm bao nhiêu % ?   

Câu 14. Cho tam giác ABC có 3AB=5AC. Kẻ phân giác AD. Nếu diện tích tam giác ABD bằng

20 cm2thì diện tích  tam giác ABC bằng bao nhiêu cm2?    

Câu 15. Cho hình thang ABCD(AB//CD) có AD=4 cm; BC=6cm. Các cạnh bên kéo dài cắt nhau tại M.Nếu độ dài MA=6cm thì đoạn MB bằng bao nhiêu cm?          

1
18 tháng 4 2017

Câu 1

n.(n+1)2.(n+2)

4 điểm

Câu 2

A>B

4 điểm

Câu 3

-2;-1;0;1

4 điểm

Câu 4

a=1;b=-2;c=

4 điểm

Câu 5

Q= -1      

4 điểm

Câu 6

(x2+3x+1)2

4 điểm

Câu 7

a= 30

4 điểm

Câu 8

minM= -36

4 điểm

Câu 9

0

4 điểm

Câu 10

3

4 điểm

Câu 11

15 cm

4 điểm

Câu 12

7cm

4 điểm

Câu 13

19%

4 điểm

Câu 14

32 cm2

4 điểm

Câu 15

MB= 9cm

4 điểm

TỰ LUẬN:  (40 điểm)

Gọi vận tốc ô tô dự định đi hết quãng đường AB là x(km/h) ( x> 6)

4 điểm

Vận tốc  đi hết  nửa quãng đường đầu là x+10(km/h)

4 điểm

Vận tốc  đi hết  nửa quãng đường sau  là x-6(km/h)

4 điểm

Thời gian dự định đi hết quãng đường AB là 60: x  (giờ)

4 điểm

Thời gian thực tế đi hết  nửa quãng đường đầu là 30: (x +10) (giờ)

4 điểm

Thời gian thực tế đi hết  nửa quãng đường sau là 30: (x -6) (giờ)

4 điểm

Theo bài ra ta có phương trình: 30: (x +10)+ 30: (x -6)= 60: x 

Giải phương trình được: x=30 (TMĐK)

8 điểm

Vậy thời gian dự định đi hết quãng đường AB là: 60:30= 2 (giờ)

4 điểm

4 điểm

mai kt toán,bh phải ôn cái này đây  -.-TỔNG HỢP KIẾN THỨC TOÁN LỚP 8Nhân Đơn Thức Với Đa ThứcMuốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.Nhân Đa Thức Với Đa ThứcMuốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với...
Đọc tiếp

mai kt toán,bh phải ôn cái này đây  -.-

TỔNG HỢP KIẾN THỨC TOÁN LỚP 8

  1. Nhân Đơn Thức Với Đa Thức

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

  1. Nhân Đa Thức Với Đa Thức

Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau.

  1. Những Hằng Đẳng Thức Đáng Nhớ.
    • Bình phương của một tổng.

Bình phương của một tổng = bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.

(A + B)2 = A2 + 2AB + B2

  • Bình phương của một hiệu

Bình phường của một hiệu = bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.

(A – B)2 = A2 – 2AB + B2

  • Hiệu hai bình phương.

Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.

A2 – B2 = (A + B)(A – B)

  • Lập phương của một tổng.

Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.

(A + B)3 = A3 + 3A2B + 3AB2 + B3

  • Lập phương của một hiệu.

Lập phương của một hiệu = lập phương số thứ nhất – 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai – lập phương số thứ hai.

(A – B)3 = A3 – 3A2B + 3AB2 – B3

  • Tổng hai lập phương.

Tổng của hai lập phương = tổng hai số đó nhân với bình phương thiếu của hiệu.

A3 + B3  = (A + B)(A2 – AB + B2)

  • Hiệu hai lập phương.

Hiệu của hai lập phương bằng : hiệu của hai số đó nhân với bình phương thiếu của tổng.

A3 – B3 = (A – B)(A2 + AB + B2)

  1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

  1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
  2. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
  3. Phân tích đa thức thành nhân tử bằng phương pháp phối hợp nhiều phương pháp.
  4. Chia đơn thức cho đơn thức.

Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau :

  • Chia hệ số của đơn thức A cho hệ số của đơn thức B.
  • Chia lũy thừa của từng biến trong A cho lũy thừa cùng biến đó trong B.
  • Nhân các kết quả vừa tìm được với nhau.
  1. Chia đa thức cho đơn thức.

Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả lại với nhau.

  • Chia đa thức một biến đã sắp xếp.
  • Phân thức đại số.

Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng A/B. trong đó A,B là những đa thức và B khác 0.

A được gọi là tử thức (hay tử), B được gọi là mẫu thức (hay mẫu).

Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1.

Số 0, số 1 cũng là những phân thức đại số.

  • Hai phân thức bằng nhau.

Hai phâ thức A/B và C/D được gọi là bằng nhau nếu A.D = B.C

Ta viết : A/B = C/D nếu A.D = B.C

  • Tính chất cơ bản của phân thức.

Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác 0 thì được một phân thức bằng phân thức đã cho.

A/B = A.M/B.M (M là một đa thức khác 0)

Nếu chia cả tử và mẫu của một phân thức cho một nhân tử chung của chúng thì ta được một phân thức bằng phân thức đã cho.

A/B = A : N / B : N (N là một nhân tử chung).

  • Quy tắc đổi dấu.

Nếu đổi dấu cả tử và mẫu của một phân thức thì được một phân thức bằng phân thức đã cho.

A/B = -A/-B

  • Rút gọn phân thức.

Muốn rút gọn một phân thức ta có thể :

  • Phân tích cả tử và mẫu thành nhân tử (nếu cần) để tìm nhân ử chung.
  • Chia cả tử và mẫu cho nhân tử chung.
  • Quy đồng mẫu thức nhiều phân thức.

Quy đồng mẫu thức nhiều phân thức là biến đổi các phân thức đã cho thành những phân thức mới có cùng mẫu thức và lần lượt bằng các phân thức đã cho.

  • Phép cộng các phân thức đại số.

17.1. Cộng hai phân thức cùng mẫu thức.

Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

17.2. Cộng hai phân thức có mẫu thức khác nhau.

Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

  • Phép trừ các phân thức đại số.

Muốn trừ phân thức A/B cho phân thức C/D, ta cộng A/B với phân thức đối của C/D.

A/B – C/D = A/B + (-C/D)

  • Phép nhân các phân thức đại số.

Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.

A/B . C/D = A.C/B.D

  • Phép chia các phân thức đại số.

Muốn chia phân thức A/B cho phân thức C/D khác 0, nhân nhân A/B với phân thức nghịch đảo của C/D.

A/B : C/D = A/B . D/C với C/D  0

PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

  • Phương trình một ẩn.

Một phương trình với ẩn x có dạng A(x) = B(x), trong đó vế trái là A(x) và vế phải là B(x) là hai biểu thức của cùng một biến.

Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc có vô số nghiệm. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

  • Giải phương trình.

Tập hợp tất các các nghiệm của một phương trình được gọi là tập nghiệm của phương trình đó và thường kí hiệu bởi S.

Khi bài toán yêu cầu giải phương trình, ta phải tìm tất cả các nghiệm (hay tìm tập nghiệm) của phương trình đó.

  • Phương trình tương đương.

Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

Ví dụ : x + 1 = 0 x = -1

  • Định nghĩa phương trình bậc nhất một ẩn.

Phương trình dạng ax + b = 0, với a và b là hai số đã cho và a 0, được gọi là phương trình bậc nhất một ẩn.

  • Hai quy tắc biến đổi phương trình.
  1. quy tắc chuyển vế.

Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

  1. b) quy tắc nhân với một số.

– Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác 0.

– Trong một phương trình, ta có thể chia cả hai vế cho cùng một số khác 0.

  1. Cách giải phương trình chưa ẩn ở mẫu.

Bước 1 : Tìm điều kiện xác định của phương trình.

Bước 2 : Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3 : Giải phương trình vừa nhận được.

Bước 4 : Kết luận. Trong các giá trị ẩn vừa tìm được ở bước 3, các giá trị thỏa mãn ĐKXĐ chính là nghiệm của phương trình đã cho.

  1. Giải bài toán bằng cách lập phương trình.

Bước 1 : Lập phương trình.

– Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

– Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

– Lập phương trinh biểu thị mối quan hệ giữa các đại lượng.

Bước 2 : Giải phương trình.

Bước 3 : Trả lời : Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN.

  1. Các nguyên tắc cần nhớ về bất phương trình.

– Khi cộng cùng một số vào hai vế của bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

– Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

– Khi nhân cả hai vế của bất đẳng thức với cùng một số âm ta được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.

  1. Bất phương trình bậc nhất một ẩn.

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b  0, ax + b  0) trong đó a và b là hai số đã cho, a 0, được gọi là bất phương trình bậc nhất một ẩn.

  1. Hai quy tắc biến đổi bất phương trình.
  2. Quy tắc chuyển vế.

Khi chuyển vế một hạng tử của bất phương trình từ vế này sang vế kia  ta phải đổi dấu hạng tử đó.

  1. b) Quy tắc nhân với một số.

Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải :

– Giữ nguyên chiều bất phương trình nếu số đó dương.

– Đổi chiều bất phương trình nếu số đó âm.

HÌNH HỌC

Chương 1 : Tứ Giác

  1. Tứ giác.

– Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất ki hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

– Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.

– Tổng các góc trong một tứ giác bằng 360 độ.

  1. Hình thang.

– Hình thang là tứ giác có hai cạnh đối song song.

– Hình thang vuông là hình thang có một góc vuông.

  1. Hình thang cân

– Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Tính chất :

– Trong hình thang cân, hai cạnh bên bằng nhau.

– Trong hình thang cân, hai đường chéo bằng nhau.

– Hình thang có hai đường chéo bằng  nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

– Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

– Hình thang có hai đương chéo bằng nhau là hình thang cân.

  1. Đường trung bình của tam giác, hình thang.
  2. Đường trung bình của tam giác.

– Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba.

– Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

  1. b) Đường trung bình của hình thang.

– Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm của cạnh bên thứ hai.

– Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.

  1. Hai điểm đối xứng qua một đường thẳng.

Hai điểm gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm đó.

  1. Hai hình đối xứng qua một đường thẳng.

– Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu mỗi điểm thuộc đường hình này đối xứng với mỗi điểm thuộc hình kia qua đường thẳng d và ngược lại.

– Nếu hai đường thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chùng bằng nhau.

  1. Hình có trục đối xứng.

– Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H.

– Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

  1. Hình bình hành.
  2. Tính chất.

Trong hình bình hành :

– Các cạnh đối bằng nhau.

– Các góc đối bằng nhau.

– Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

  1. b) Dấu hiệu nhận biết.

– Tứ giác có các cạnh đối song song là hình bình hành.

– Tứ giác có các cạnh đối bằng nhau là hình bình hành.

– Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

– Tứ giác có các góc đối bằng nhau là hình bình hành.

– Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

  1. Hai điểm đối xứng qua một điểm.

Hai điểm đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

  1. Hai hình đối xứng qua một điểm.

– Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại.

– Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

  1. Hình có đối xứng tâm.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

  1. Hình chữ nhật.
  2. Tính chất.

– Hình chữ nhật là tứ giác có bốn góc vuông.

– Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

  1. b) Dấu hiệu nhận biết hình chữ nhật.

– Tứ giác có ba góc vuông là hình chữ nhật.

– Hình thang cân có một góc vuông là hình chữ nhật.

– Hình bình hành có một góc vuông là hình chữ nhật.

– Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

  1. Tam giác vuông.

– Trong một tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

– Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

  1. Khoảng cách giữa hai đường thẳng song song.

– Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm tùy ý trên đường thẳng này đến đường thẳng kia.

  1. Hình thoi.

– Hình thoi là tứ giác có bốn cạnh bằng nhau.

  1. tình chất.

Trong hình thoi :

– Hai đường chéo vuông góc với nhau.

– Hai đường chéo là các đường phân giác của các góc của hình thoi.

  1. b) Dấu hiệu nhận biết hình thoi.

– Tứ giác có bốn cạnh bằng nhau là hình thoi.

– Hình bình hành có hai cạnh bằng nhau là hình thoi.

– Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

– Hình bình hanh có một đường chéo là đường phân giác của một góc là hình thoi.

  1. Hình vuông.
  2. a) Tính chất.

– Hình vuông là tứ giác có bốn góc vuông và bốn cạnh bằng nhau.

– Hình vuông có các tính chất của hình chữ nhật và hình thoi.

  1. b) Dấu hiệu nhận biết hình vuông.

– Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

– Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

– Hình chữ nhật có một đường chéo là được phân giác của một góc là hình vuông.

– Hình thoi có một góc vuông là hình vuông.

– Hình thoi có hai đường chéo bằng nhau là hình vuông.

TAM GIAC ĐỒNG DẠNG

  1. Định lý Ta – lét trong tam giác.

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

  1. Định lý đảo và hệ quả của định lý Ta – let.
  2. Định lý Ta – lét đảo.

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

  1. b) Hệ quả của định lý Ta – let.

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

  1. Tính chất đường phân giác trong tam giác.

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của đoạn ấy.

  1. Tam giác đồng dạng.

Tam giác A’B’C’ gọi là đồng dạng với tam giác  ABC nếu :

A’ = A ; B’ = B ; C’ = C ;

A’B/AB = B’C’/BC = C’A’/CA

– Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

  1. Ba trường hợp đồng dạng của tam giác.
  2. trường hợp thứ nhất (c.c.c)

Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.

  1. b) trường hợp thứ hai (c.g.c)

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đồng dạng với nhau.

  1. c) trường hợp thứ ba (g.g.g)

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

  1. Các trường hợp đồng dạng của tam giác vuông.

Hai tam giác vuông đồng dạng với nhau nếu :

– Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.

– Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

– Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyện và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

2
27 tháng 4 2018

Thank bn nha mot mk kiem tra toan 8 do. Chuc bn hoc tot

1 tháng 9 2019

tài liệu ôn tập à, thank

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.a.Tính tỉ số  NB/NCb.Cho AB = 8cm, CD = 17cm.Tính MN?Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.a.Chứng minh IK // ABb.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.Bài 3: Cho tam giác nhọn...
Đọc tiếp

Bài 1:   Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.

a.Tính tỉ số  NB/NC

b.Cho AB = 8cm, CD = 17cm.Tính MN?

Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.

a.Chứng minh IK // AB

b.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.

Bài 3: Cho tam giác nhọn ABC và các đường cao BD, CE, AM cắt nhau tại H.

a,Chứng minh:  ΔABD = ΔACE

b, Chứng minh: ΔAED ~ ΔACB và tính góc AED biết góc ACB = 48°

c, EH.EC=EA.EB

d, Chứng minh H là giao điểm ba đường phân giác của tam giác EDM

Bài 4:  Cho tam giác ABC vuông ở A, đường cao AH, BC = 20cm, AH = 8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB.

a.) Chứng minh : AB2 = BH . BC

b) Chứng minh tam giác ADE đồng dạng với tam giác ABC.

c) Tính diện tích tam giác ADE

Bài 5: Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đường phân giác BD; đường cao AH.  Tính độ dài  BC ;  BH  ;  AH  ; AD?

0
Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

3
22 tháng 10 2019

Câu 9.

a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)

b) Áp dụng BĐT Cauchy cho 2 số không âm:

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

22 tháng 10 2019

Câu 10. 

a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)

Vậy ​\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)