Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+...+\frac{2}{18\cdot20}\)
\(B=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{18\cdot20}\)
\(B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)
\(B=\frac{1}{2}-\frac{1}{20}\)
\(B=\frac{9}{20}\)
=))
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\frac{10}{18}+\frac{4}{9}+\frac{26}{10}+\frac{12}{5}+\frac{9}{15}\)
\(=\frac{5}{9}+\frac{4}{9}+\frac{13}{5}+\frac{12}{5}+\frac{3}{5}\)
\(=\left(\frac{5}{9}+\frac{4}{9}\right)+\left(\frac{13}{5}+\frac{12}{5}+\frac{3}{5}\right)\)
\(=1+\frac{28}{5}\)
\(=\frac{33}{5}\)
Ta có:
a) \(\frac{10}{18}+\frac{4}{9}+\frac{26}{10}+\frac{12}{5}+\frac{9}{15}=\frac{5}{9}+\frac{4}{9}+\frac{13}{5}+\frac{12}{5}+\frac{9}{15}=1+1+\frac{9}{15}=1\frac{9}{15}\)
b)\(\frac{10}{18}+\frac{4}{9}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=\left(\frac{5}{9}+\frac{4}{9}\right)+\left(\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\right)\)
\(=1+\frac{31}{128}=1\frac{31}{128}\)
Lời giải :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
ko chép lại đề :
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)- \(\frac{1}{99}\)+ \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
= 1/2+1/4+....+1/512+1/512 - 1/512
= 1/2+1/4+....+1/256+1/256 - 1/512
........
= 1/2+1/2 - 1/512 = 1-1/512 = 511/512
k mk nha
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{1}-\frac{1}{8}\)
\(=\frac{7}{8}\)'
\(A=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{2012\times2014}\)
\(=\frac{1}{2}\times(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2012\times2014})\)
\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2012}-\frac{1}{2014})\)
\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{2014})\)
\(=\frac{1}{2}\times(\frac{1007}{2014}-\frac{1}{2014})\)
\(=\frac{1}{2}\times\frac{503}{1007}\)
\(=\frac{503}{2014}\)
Ta có ; \(\frac{1}{2}=\frac{1007}{2014}\)
Vậy A bé hơn B
Chúc bạn học tốt
Gọi biểu thức trên là A
Ta có :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}+\frac{1}{256}-\frac{1}{256}\)
\(2A=1+A-\frac{1}{256}\)
\(2A=A+1-\frac{1}{256}\)
\(2A-A=\frac{255}{256}\)
\(A=\frac{255}{256}\)
Gọi \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right]\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^8}\)
\(A=1-\frac{1}{2^8}=1-\frac{1}{256}=\frac{255}{256}\)
Xin lỗi mk nhầm
đề là:
\(1\cdot2\cdot3\cdot4\cdot...\cdot99999999999+\left(\frac{1}{2}+\frac{2}{1}+0,5-1+3-5\right)\)
A=1999/2000
B=199/200
C=511/512
hok tốt
Đáp án
mình lười trình bày cách làm lém, để đáp án thui nha
A = \(\frac{1999}{2000}\)
B = \(\frac{199}{200}\)
C = \(\frac{511}{512}\)