K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 7 2023

Lời giải:
$D=\frac{1+\cos a+2\cos ^2a-1+4\cos ^3a-3\cos a}{\cos a+2\cos ^2a-1}$

$=\frac{4\cos ^3a+2\cos ^2a-2\cos a}{\cos a+2\cos ^2a-1}$

$=\frac{2\cos a(\cos a+2\cos ^2a-1)}{\cos a+2\cos ^2a-1}$

$=2\cos a$

4 tháng 3 2018

a) √2 cos(x - π/4)

= √2.(cosx.cos π/4 + sinx.sin π/4)

= √2.(√2/2.cosx + √2/2.sinx)

= √2.√2/2.cosx + √2.√2/2.sinx

= cosx + sinx (đpcm)

b) √2.sin(x - π/4)

= √2.(sinx.cos π/4 - sin π/4.cosx )

= √2.(√2/2.sinx - √2/2.cosx )

= √2.√2/2.sinx - √2.√2/2.cosx

= sinx – cosx (đpcm).

21 tháng 9 2023

a) \(cos\left(A+B\right)+cosC=0\)

\(\Leftrightarrow cos\left(\pi-C\right)+cosC=0\)

\(\Leftrightarrow-cosC+cosC=0\)

\(\Leftrightarrow0=0\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

b) \(cos\left(\dfrac{A+B}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi-C}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)=sin\dfrac{C}{2}\)

\(\Leftrightarrow sin\dfrac{C}{2}=sin\dfrac{C}{2}\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

c) \(cos\left(A-B\right)+cos\left(2B+C\right)=0\left(1\right)\)

Ta có : \(A+B+C=\pi\)

\(\Leftrightarrow2B+C=\pi-A+B\)

\(\Leftrightarrow2B+C=\pi-\left(A-B\right)\)

\(\left(1\right)\Leftrightarrow cos\left(A-B\right)+cos\left[\pi-\left(A-B\right)\right]=0\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A-B\right)=0\)

\(\Leftrightarrow0=0\left(đúng\right)\)

\(\Leftrightarrow dpcm\)

15 tháng 8 2019
https://i.imgur.com/Ca7RZxn.jpg
27 tháng 9 2019

\(sin^2a-sina.cosa+cos^2a\)

\(\Leftrightarrow tan^2a-tana+1\)

Thay tana = 1/2

\(\left(\frac{1}{2}\right)^2-\frac{1}{2}+1=\frac{3}{4}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}\cos \left( {a + b} \right) + \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b + \sin a.\sin b + \cos a.\cos b = 2\cos a.\cos b\\\cos \left( {a + b} \right) - \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b - \sin a.\sin b - \cos a.\cos b =  - 2\sin a.\sin b\\\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b + \sin a.\cos b - \cos a.\sin b = 2\sin a.\cos b\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\)

\( = \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) + \cos \left( {a + b + a - b} \right)} \right] - \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) - \cos \left( {a + b + a - b} \right)} \right]\)

\( = \frac{1}{2}\left( {\cos 2b + \cos 2a - \cos 2b + \cos 2a} \right) = \frac{1}{2}.2\cos 2a = \cos 2a = 1 - 2{\sin ^2}a\)

Vậy chọn đáp án C

\(=\dfrac{cosa}{\sqrt{2}}\cdot\sqrt{\dfrac{1-cosa+1+cosa}{1-cos^2a}}\)

\(=\dfrac{cosa}{\sqrt{2}}\cdot\dfrac{\sqrt{2}}{sina}=\dfrac{cosa}{sina}=cota\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(A = \frac{{ \sin 2x }}{{1+ \cos 2x }} = \frac{{2.\sin x.\cos x }}{{1+(2\cos ^2x-1)}} =  \frac{{2.\sin x.\cos x }}{{2\cos ^2x}} = \frac{{\sin x}}{{\cos x}}= tanx\)

\(A=cos\left(7\pi-x\right)+3sin\left(\dfrac{3\pi}{2}+x\right)-cos\left(\dfrac{\pi}{2}-x\right)-sinx\)

\(=cos\left(x+\pi\right)+3sin\left(-\dfrac{\pi}{2}+x\right)-cos\left(\dfrac{\pi}{2}-x\right)-sinx\)

\(=-cosx-3cosx-sinx-sinx=-4cosx-2sinx\)

D=sin(pi+x)+sinx+cot(pi-x)+tan(pi/2-x)

=-sinx+sinx-cotx+cotx=0