K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

bạn ơi cho mình hỏi đề như này thì tiêu chuẩn của thành viên là phải lớp cao cao tí ạ?

13 tháng 5 2021

Nghe nói đây là đề thi tuyển,thế có môn khác không ạ ?

3 tháng 3 2020

a) ta có: \(|4x^2-1|\ge0\forall x\)

\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)

Mà \(|4x^2-1|+3x|2x-1|=0\)

=> I4x^2-1I và 3xI2x-1I=0

=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0

=> 4x^2=1 và x=0 hoặc 2x=1

=> x^2=1/4 và x=0 hoặc x=1/2

=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2

Vậy x=\(\pm\frac{1}{2}\); x=0

3 tháng 3 2020

Phạm Nhật Quỳnh

Bạn xem lại nhé x chưa chắc đã dương nha 

Bài 1 1) Phân tích đa thức thành nhân a) \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)b)\(x^4+4\)Bài 2 1) Gải phương trình \(\left(\frac{x+3}{x-2}\right)^2+6.\left(\frac{x-3}{x+2}\right)^2=7.\left(\frac{x^2-9}{x^2-4}\right)\)2) Tìm số nguyên x,y thỏa mãn \(x^2+y^2+5xy+60=37xy\)Bài 3 1)  Cho 3 số  x,y,z đôi một khác nhau thỏa mãn \(x^3+y^3+z^3=3xyz\left(xyz\ne0\right)\)2) Tìm GTLN và GTNN \(A+\frac{27-12x}{x^2+9}\)( bài 330 sách...
Đọc tiếp

Bài 1 

1) Phân tích đa thức thành nhân 

a) \(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)

b)\(x^4+4\)

Bài 2 

1) Gải phương trình \(\left(\frac{x+3}{x-2}\right)^2+6.\left(\frac{x-3}{x+2}\right)^2=7.\left(\frac{x^2-9}{x^2-4}\right)\)

2) Tìm số nguyên x,y thỏa mãn \(x^2+y^2+5xy+60=37xy\)

Bài 3 

1)  Cho 3 số  x,y,z đôi một khác nhau thỏa mãn \(x^3+y^3+z^3=3xyz\left(xyz\ne0\right)\)

2) Tìm GTLN và GTNN \(A+\frac{27-12x}{x^2+9}\)( bài 330 sách NCPT tập 2 )

Bài 4 

1) Cho 2 số chính phương liên tiếp . CMR tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ 

2) Cho \(F\left(x\right)=x^2+ax^2+bx+c\left(a,b,c\in R\right)\)

Biết đa thức F(x) chia cho x+1 dư -4 và chia cho x-2 dư 5

Tính \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)

Bài 5 : Cho O là trung điểm của AB , trên cùng một nửa mặt phẳng chứa AB vẽ tia Ax và By vuông góc với AB.   Trên tia Ax lấy  C , qua O kẻ đường thẳng vuông góc với OC

CMR 1) \(AB^2=4AC.BD\)

2) Kẻ OM vuông góc  với CD. CMR CO là phân giác góc ACD và AC=CM

3) Tia BM cắt Ax tại N . CMR C là trung điểm của AN

4) Kẻ MH vuông góc AB .  CMR AD,BC,MH đồng quy

Câu 6 : Tìm số nguyên n sao cho

\(n^3+2018n=2020^{2019}+4\)

2
14 tháng 4 2019

\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)

Đặt m=x2+5x+4, ta có:

\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)

\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)

Tự làm tiếp :v 

15 tháng 4 2019

\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)

\(=\left(x^2+5x+5\right)^2-1-24\)

\(=\left(x^2+5x+5\right)^2-25\)

\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)

\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(2.a\) Đặt  \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)

Thay vào PT ta được:\(a^2+6b^2=7ab\)

                                \(\Leftrightarrow a^2-7ab+6b^2=0\)  

                                 \(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

                                 \(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

                                  \(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

                                   \(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)

Bài 1. Thực hiện các phép tính sau :a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)Bài 5. Cho hình thang ABCD (AB // CD). Các...
Đọc tiếp

Bài 1. Thực hiện các phép tính sau :

a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)

b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)

Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4

Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0

Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)

Bài 5. Cho hình thang ABCD (AB // CD). Các tia phân giác của góc A và góc D cắt nhau ở I; các tia phân giác của góc B và góc C cắt nhau ở J. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh bốn điểm M, N, I, J thẳng hàng.

Bài 6. Cho hình bình hành ABCD. Trên các cạnh AB, BC, CD và DA ta dựng về phía ngoài các hình vuông lần lượt có tâm là O1, O2, O3, O4. Chứng minh tứ giác O1O2O3O4 là hình vuông.

(Các bạn có thể giải bất kì câu nào mà các bạn muốn)

0
https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

21 tháng 5 2023

Câu 2: pt đã cho \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)

\(\Leftrightarrow2x^3-6x^2-6x-8=0\)

\(\Leftrightarrow x^2-3x^2-3x-4=0\)

\(\Leftrightarrow\left(x-1\right)^3-6\left(x-1\right)-9=0\) (*)

Đặt  \(x-1=t\) thì (*) trở thành \(t^3-6t-9=0\) 

\(\Leftrightarrow t^3-9t+3t-9=0\)

\(\Leftrightarrow t\left(t^2-9\right)+3\left(t-3\right)=0\)

\(\Leftrightarrow\left(t-3\right)\left(t^2+3t\right)+3\left(t-3\right)=0\)

\(\Leftrightarrow\left(t-3\right)\left(t^3+3t+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t^2+3t+3=0\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x-1=3\) 

\(\Leftrightarrow x=4\)

Vậy pt đã cho có nghiệm \(x=4\)

 

21 tháng 5 2023

bài đấy thì em làm được rồi á. Chỉ là em đăng lên xem còn cách nào giải hay hơn thôi ạ...