Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:Ta có:
2800=(28)100=256100(1)
3600=(36)100=729100(2)
Từ (1),(2)
Ta có: 256100<729100(Vì 256<729)
=>2800<3600
Mình làm bài 1 thôi nhé!
Ta có :2^800=2^2.400=(2^2)^400=4^400=4^4.100=(4^4)^100=256^100
3^600=3^2.300=(3^2)^300=9^300=9^3.100=(9^3)^100=729^100
Vì 256^100<729^100 nên 2^800<3^600
^ là mũ nhé!
a) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{4}{5}\right)\)
\(=\frac{47}{47}+\left(\frac{1}{5}+\frac{4}{5}\right)\)
\(=1+1=2\)
b) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)
\(=12.\frac{4}{9}+\frac{4}{3}\)
\(=\frac{16}{3}+\frac{4}{3}\)
\(=\frac{20}{3}\)
c) \(12,5.\left(-\frac{5}{7}\right)+15.\left(-\frac{5}{7}\right)\)
\(=\left(-\frac{5}{7}\right).\left(12,5+15\right)\)
\(=\left(-\frac{5}{7}\right).27,5\)
\(=\left(-\frac{5}{7}\right).\frac{55}{2}\)
\(=-\frac{275}{14}\)
d) \(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
\(=\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)
\(=\frac{4}{5}.\left(\frac{15}{4}\right)^2\)
\(=\frac{4}{5}.\frac{225}{16}\)
\(=\frac{45}{4}\)
a)\(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
=\(\frac{21}{47}+\frac{1}{5}+\frac{26}{47}+\frac{4}{5}\)
=\(\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{1}{5}+\frac{4}{5}\right)\)
=\(\frac{47}{47}+\frac{5}{5}=1+1=2\)
b)\(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}\)
=\(12.\frac{4}{9}+\frac{4}{3}\)
=\(\frac{12}{1}.\frac{4}{9}+\frac{4}{3}=\frac{48}{9}+\frac{4}{3}\)
=\(\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)
c)\(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)\)
=\(\left(-\frac{5}{7}\right).\left(12,5+1,5\right)\)
=\(\left(-\frac{5}{7}\right).14=\left(-\frac{5}{7}\right).\frac{14}{1}=-10\)
d)\(\frac{4}{5}.\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
=\(\frac{4}{5}.\left(\frac{14}{4}+\frac{1}{4}\right)^2\)
=\(\frac{4}{5}.\left(\frac{15}{4}\right)^2\)
=\(\frac{4}{5}.\frac{225}{16}\)
=\(\frac{900}{80}=\frac{45}{4}\)
Nhớ tick cho mình nha!
Dài ngoằng nhìn phát ngán
a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
Bài 1:
a)\(\frac{7}{29}+\frac{11}{47}-\frac{3}{5}+\frac{22}{29}-\frac{58}{47}\)
\(=\left(\frac{7}{29}+\frac{22}{29}\right)+\left(\frac{11}{47}-\frac{58}{47}\right)-\frac{3}{5}\)
\(=1+\left(-1\right)-\frac{3}{5}=\frac{-3}{5}\)
b) \(\left|-\frac{3}{7}\right|:\left(-3\right)^2-\sqrt{\frac{4}{49}}\)
\(=\frac{3}{7}:9-\frac{2}{7}\)
\(=\frac{1}{21}-\frac{2}{7}=\frac{1}{21}-\frac{6}{21}=\frac{-5}{21}\)
Bài 2:
a) \(\frac{1}{2}+\frac{2}{3}x=\frac{5}{6}\)
\(\frac{2}{3}x=\frac{5}{6}-\frac{1}{2}\)
\(\frac{2}{3}x=\frac{5}{6}-\frac{3}{6}\)
\(\frac{2}{3}x=\frac{1}{3}\)
\(x=\frac{1}{3}.\frac{3}{2}\)
\(x=\frac{1}{2}\)
b) \(\left|x-1\right|=7x\)( cái này đề mk ko hiểu nên mình làm đề bài ntn nhá)
\(\Rightarrow\orbr{\begin{cases}x-1=7x\\x-1=-7x\end{cases}\Leftrightarrow\orbr{\begin{cases}x-7x=1\\x+7x=1\end{cases}}}\Leftrightarrow\orbr{\begin{cases}-6x=1\\8x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{1}{8}\end{cases}}}\)