K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xem đoạn đường ray thẳng là tiếp tuyến của hai đoạn đường ray vòng cung .

Điểm B cố định nằm trong đường tròn có cung là AC .Đường thẳng OB cắt đường tròn đó tại hai điểm A và A’

Ta có : A và A’ cố định

Vì B là tiếp điểm cung nhỏ trong nên BC là tiếp tuyến của đường tròn (O;OB)

Suy ra : BC ⊥ OB

Kéo dài BC cắt đường tròn (O;OA) tại C’

Suy ra : BC = BC’ ( đường kính vuông góc với dây cung)

Xét hai tam giác BAC và BC’A’ ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(hai góc nội tiếp cùng chắn cung AC)

Suy ra  ∆ BAC đồng dạng ∆ BC’A’

⇔ BC'/AB =BA'/BC ⇒ BC.BC’ = AB.A’B

Mà BC = BC’ và BA’ = 2R – AB

Nên B C 2  = AB(2R –AB)

⇔  28 , 4 2 =1,1 (2R – 1,1)

⇔ 2,2R =806,56 + 1,21 =807,77

⇔ R = 807,77 : 2,2 ≈ 367,2(m)

Vậy bán kính đoạn đường ray hình vòng cung là 367,2m

13 tháng 4 2017

Hướng dẫn giải:

∆OAB là tam giác đều có cạnh bằng R = 5,1cm. Áp dụng công thức tính diện tích tam giác đều cạnh a là a2√44 ta có

S∆OBC = SΔOBC=R2√34 (1)

Diện tích hình quạt tròn AOB là:

π.R2.6003600=πR26 (2)

Từ (1) và (2) suy ra diện tích hình viên phân là:

πR26−R2√34=R2(π6−√34)

Thay R = 5,1 ta có Sviên phân ≈ 2,4 (cm2)

9 tháng 6 2017

a) Diện tích xung quanh của hình trụ : \(288\pi\left(cm^2\right)\)

b) Thể tích hình cầu : \(2304\pi\left(cm^3\right)\)

c) Diện tích mặt cầu : \(576\pi\left(cm^2\right)\)

24 tháng 4 2017

Cách 1: Đặt tên các đoạn thẳng như hình bên.

Ta có:

.

Suy ra vuông tại A.

Áp dụng hệ thức h^{2}=b'c' ta có:

Cách 2:

Cũng chứng minh vuông như cách 1.

Áp dụng hệ thức ta được .



24 tháng 4 2017

2016-11-05_165411

Kí hiệu các điểm như hình vẽ
ta có OA = OB = OC = 1/2 BC
Tam giác ABC có trung tuyến AO bằng một nửa cạnh tương ứng BC nên nó là tam giác vuông tại đỉnh A, đường cao AH
Áp dụng định lí 2 ta có:
AH² = BH . CH => x² = a.b