Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)
\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)
b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)
\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)
\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)
c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)
\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)
\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)
d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)
e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)
\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)
a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)
\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{303}{610}\)
\(\Rightarrow B=\frac{101}{610}\)
b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)
\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)
\(\Rightarrow C=\frac{408}{205}\)
c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)
\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)
\(\Rightarrow D=\frac{1350}{271}\)
Đề: X=\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+.......+\(\frac{1}{1+2+3+4+20}\)
X=\(\frac{1}{2.3:2}\)+\(\frac{1}{3.4:2}\)+\(\frac{1}{4.5:2}\)+......+\(\frac{1}{20.21:2}\)
X=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+\(\frac{2}{20.21}\)
X=2.(\(\frac{1}{2}\).3+\(\frac{1}{3}\).4+\(\frac{1}{4}\).5+.....+\(\frac{1}{20}\).21)
X=2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{20}\)-\(\frac{1}{21}\))
X=2.(\(\frac{1}{2}\)-\(\frac{1}{21}\))
X=2.(\(\frac{21}{42}\)-\(\frac{2}{42}\))
X=2.\(\frac{19}{42}\)
X=\(\frac{19}{21}\)
Mn xem thử đúng ko nha!
Ta có: \(1+2=\frac{2.3}{2}\); \(1+2+3=\frac{3.4}{2}\); .......... ; \(1+2+3+....+20=\frac{20.21}{2}\)
\(\Rightarrow X=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.......+\frac{1}{\frac{20.21}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+........+\frac{2}{20.21}=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{20.21}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{20}-\frac{1}{21}\right)=2.\left(\frac{1}{2}-\frac{1}{21}\right)=2.\frac{19}{42}=\frac{19}{21}\)
Gọi biểu thức là A ta có :
2A = 1 / 2 ^ 2 + 1 / 2 ^ 3 + ... + 1 / 2 ^ 11
2A - A = 1 / 2 ^ 11 - 1 / 2
KO tính được ra kết quả nên cứ để thế
Nhanh tay lên mk k cho , hôm nay mk có chuyện vui lên hào phóng tí!
1,
\(\left(\frac{4}{9}-\frac{3}{7}-\frac{4}{11}\right)-\left(\frac{11}{7}+\frac{4}{9}-\frac{48}{11}\right)\)
\(=\frac{4}{9}-\frac{3}{7}-\frac{4}{11}-\frac{11}{7}-\frac{4}{9}+\frac{48}{11}\)
\(=\left(\frac{4}{9}-\frac{4}{9}\right)-\left(\frac{3}{7}+\frac{11}{7}\right)+\left(\frac{48}{11}-\frac{4}{11}\right)\)
\(=0-2+4\)
\(=2\)
2,
a, \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2019}{2018}\)
\(=\frac{2019}{2}\)
b, \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
Đặt A = \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
A = \(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt B = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
2B - B = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
B = \(1-\frac{1}{2^{10}}\)
=> A = \(1-B=1-\left(1-\frac{1}{2^{10}}\right)=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)