Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik chưa học tới lớp 9
Mình chỉ biết mỗi câu b à
Tính C=25 độ C khi F=77o
Tính F=86 độ F khi C =30o
a/ \(y=\left(k-9\right)x^2+\left(m^2-mk+6k^2\right)x+5\)
Để hàm số đã cho bậc nhất
\(\Leftrightarrow\left\{{}\begin{matrix}k-9=0\\m^2-mk+6k^2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=9\\m^2-9m+484\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=9\\m\in R\end{matrix}\right.\)
b/ Để hàm số là bậc nhất
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-3a+2=0\\a^2-2ab-2b^2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\\a^2-2ab-2b^2\ne0\end{matrix}\right.\)
- Với \(a=1\Rightarrow-2b^2-2b+1\ne0\Rightarrow b\ne\frac{-1\pm\sqrt{3}}{2}\)
- Với \(a=2\Rightarrow-2b^2-4b+4\ne0\Rightarrow b\ne-1\pm\sqrt{3}\)
c/\(y=\left(m^2-m-13\right)x^3+\left(2m-1\right)x+5\)
Để hàm số đã cho là bậc nhất và nghịch biến
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-m-13=0\\2m-1< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{1\pm\sqrt{53}}{2}\\m< \frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow m=\frac{1-\sqrt{53}}{2}\)
a: f(1)=-1,5
f(2)=-6
f(3)=-13,5
=>f(1)>f(2)>f(3)
b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)
f(-2)=-1,5x4=-6
f(-1)=-1,5x1=-1,5
=>f(-3)<f(-2)<f(-1)
c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0
a: Thay TC=25 vào (1), ta được:
\(T_F=1.8\cdot25+32=45+32=77\)
c: Thay A=106 vào (2), ta được:
5,6TF-275=106
=>5,6*TF=381
=>TF=68
Thay TF=68 vào (1), ta đc:
1,8*TC+32=68
=>1,8*TC=36
=>TC=20
Có thể vận dụng định lý Viet cho đa thức bậc 3, tuy nhiên kiến thức này không nằm trong chương trình THCS, vì vậy tôi sẽ trình bày cách khác đi đối với bài này:
Xét phương trình \(x^3+3x^2-7x=6\leftrightarrow\left(x-2\right)\left(x^2+5x+3\right)=0\leftrightarrow x=2,\frac{-5\pm\sqrt{13}}{2}\).
Do các số \(a,b,c\) đôi một phân biệt là nghiệm của phương trình nên ta có trong ba số này có 1 số bàng 2, một số bằng \(\frac{-5+\sqrt{13}}{2}\), một số bằng \(\frac{-5-\sqrt{13}}{2}\). Từ đây ta được \(a+b+c=-3;ab+bc+ca=-7,abc=6\).
(Cách thứ hai kiểm tra điều này bằng cách trừ hai đẳng thức cho nhau rồi trừ lần nữa)
Chú ý rằng \(f\left(x\right)=\left(x+2\right)\left(x-3\right)\to f\left(a\right)f\left(b\right)f\left(c\right)=\left(a+2\right)\left(b+2\right)\left(c+2\right)\left(a-3\right)\left(b-3\right)\left(c-3\right)\).
Ta có \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8=6-14-12+8=-12.\)
và
\(\left(a-3\right)\left(b-3\right)\left(c-3\right)=abc-3\left(ab+bc+ca\right)+9\left(a+b+c\right)-27\)
\(=6+21-27-27=-27.\)
Thành thử \(f\left(a\right)f\left(b\right)f\left(c\right)=\left(-12\right)\times\left(-27\right)=324.\)
Bài 11:
\(\overrightarrow{AB}=\left(2;4\right)\)
\(\overrightarrow{AC}=\left(m-1;3\right)\)
Để A,B,C thẳng hàng thì \(\dfrac{m-1}{2}=\dfrac{3}{4}\)
=>m-1=3/2
hay m=5/2
a: Phải.Vì \(\dfrac{5}{9}>0\)
b: \(C=\dfrac{5}{9}\left(30-32\right)=\dfrac{5}{9}\cdot\left(-2\right)=-\dfrac{10}{9}\)
c: \(\dfrac{5}{9}\left(F-32\right)=40\)
\(\Leftrightarrow F-32=72\)
hay F=104