K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Ta có: \(C = \dfrac{5}{9}.\left( {F - 32} \right) = \dfrac{5}{9}F - \dfrac{5}{9}.32 = \dfrac{5}{9}F - \dfrac{{160}}{9}\)

Vì \(C = \dfrac{5}{9}F - \dfrac{{160}}{9}\) có dạng\(C = aF - b\) với \(a = \dfrac{5}{9}\) và \(b =  - \dfrac{{160}}{9}\) nên \(C\) là hàm số bậc nhất của biến số \(F\).

b)

- Với \(F = 32 \Rightarrow C = \dfrac{5}{9}.32 - \dfrac{{160}}{9} = \dfrac{{160}}{9} - \dfrac{{160}}{9} = 0\)

Vậy vớ \(F = 32\) thì \(C = 0\).

- Với \(C = 100 \Rightarrow 100 = \dfrac{5}{9}F - \dfrac{{160}}{9}\)

\( \Leftrightarrow \dfrac{5}{9}F = 100 - \dfrac{{160}}{9}\)

\( \Leftrightarrow \dfrac{5}{9}F = \dfrac{{740}}{9}\)

\( \Leftrightarrow F = \dfrac{{740}}{9}:\dfrac{5}{9}\)

\( \Leftrightarrow F = 149\)

Vậy khi \(C = 100\) thì \(F = 149\).

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

F là một hàm số theo biến C vì với mỗi giá trị của C chỉ cho ta duy nhất một giá trị của F.

24 tháng 4 2017

nhiệt độ f của thành phố hồ chí minh là

\(F=\frac{9}{5}C+32\)\(=\frac{9}{5}.35+32=63+32=95\)(độ F)

24 tháng 4 2017

em mới lớp 6 đó nghen

nếu sai thì cững tha cho em nhé 

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Thay C=10 vào \(C = \frac{5}{9}\left( {F - 32} \right)\), có:

\(\frac{5}{9}\left( {F - 32} \right) = 10\)

F − 32 = 18

F = 50

Chọn B

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Ta có:

\(f\left( {\dfrac{1}{5}} \right) = \dfrac{5}{{4.\dfrac{1}{5}}} = \dfrac{5}{{\dfrac{4}{5}}} = 5:\dfrac{4}{5} = 5.\dfrac{5}{4} = \dfrac{{25}}{4};\)

\(f\left( { - 5} \right) = \dfrac{5}{{4.\left( { - 5} \right)}} = \dfrac{5}{{ - 20}} = \dfrac{{ - 1}}{4};\)

\(f\left( {\dfrac{4}{5}} \right) = \dfrac{5}{{4.\dfrac{4}{5}}} = \dfrac{5}{{\dfrac{{16}}{5}}} = 5:\dfrac{{16}}{5} = 5.\dfrac{5}{{16}} = \dfrac{{25}}{{16}}\)

b) Ta có:

\(f\left( { - 3} \right) = \dfrac{5}{{4.\left( { - 3} \right)}} = \dfrac{5}{{ - 12}} = \dfrac{{ - 5}}{{12}};\)

\(f\left( { - 2} \right) = \dfrac{5}{{4.\left( { - 2} \right)}} = \dfrac{5}{{ - 8}} = \dfrac{{ - 5}}{8};\)

\(f\left( { - 1} \right) = \dfrac{5}{{4.\left( { - 1} \right)}} = \dfrac{5}{{ - 4}} = \dfrac{{ - 5}}{4};\)

\(f\left( { - \dfrac{1}{2}} \right) = \dfrac{5}{{4.\left( { - \dfrac{1}{2}} \right)}} = \dfrac{5}{{\dfrac{{ - 4}}{2}}} = \dfrac{5}{{ - 2}} = \dfrac{{ - 5}}{2}\);

\(f\left( {\dfrac{1}{4}} \right) = \dfrac{5}{{4.\dfrac{1}{4}}} = \dfrac{5}{{\dfrac{4}{4}}} = \dfrac{5}{1} = 5\);

\(f\left( 1 \right) = \dfrac{5}{{4.1}} = \dfrac{5}{4}\);

\(f\left( 2 \right) = \dfrac{5}{{4.2}} = \dfrac{5}{8}\)

Ta có bảng sau:

\(x\)

–3

–2

–1

\( - \dfrac{1}{2}\)

\(\dfrac{1}{4}\)

1

2

\(y = f\left( x \right) = \dfrac{5}{{4x}}\)

\(\dfrac{{ - 5}}{{12}}\)

\(\dfrac{{ - 5}}{8}\)

\(\dfrac{{ - 5}}{4}\)

\(\dfrac{{ - 5}}{2}\)

5

\(\dfrac{5}{4}\)

\(\dfrac{5}{8}\) 

19 tháng 3 2022

C

Thân nhiệt của người đó theo độ C là trog khoảng: 206,6 độ C đến 211,1 độ

9 tháng 5 2022

-Đề thiếu, giải hệ 4 ẩn phải có 4 phương trình.

Anh để ý trên mục Toán lớp 8 có một câu hỏi được nhiều người đăng cùng lúc, nên anh xin trả lời câu hỏi đó.Đề: Cho \(1\le a,b,c\le3\) và \(a+b+c=6\) . Tìm \(max\) của biểu thức \(f\left(a,b,c\right)=a^2+b^2+c^2\).Trong đó kí hiệu \(f\left(x,y,z\right)\) là đa thức khi thay \(a=x,b=y,c=z\), tức là \(f\left(x,y,z\right)=x^2+y^2+z^2\).-----Nhận xét: Trong 3 số \(a,b,c\) phải có số lớn hơn bằng 2. Không mất tính tổng...
Đọc tiếp

Anh để ý trên mục Toán lớp 8 có một câu hỏi được nhiều người đăng cùng lúc, nên anh xin trả lời câu hỏi đó.

Đề: Cho \(1\le a,b,c\le3\) và \(a+b+c=6\) . Tìm \(max\) của biểu thức \(f\left(a,b,c\right)=a^2+b^2+c^2\).

Trong đó kí hiệu \(f\left(x,y,z\right)\) là đa thức khi thay \(a=x,b=y,c=z\), tức là \(f\left(x,y,z\right)=x^2+y^2+z^2\).

-----

Nhận xét: Trong 3 số \(a,b,c\) phải có số lớn hơn bằng 2. Không mất tính tổng quát gọi số đó là \(a\).

Khi đó \(b+c-1\le5-a=3\)

Ta có \(f\left(a,b,c\right)=a^2+b^2+c^2\) và \(f\left(a,b+c-1,1\right)=a^2+\left(b+c-1\right)^2+1\).

Ta sẽ CM \(f\left(a,b,c\right)\le f\left(a,b+c-1,1\right)\).

Biến đổi tương đương ta được \(b^2+c^2\le b^2+c^2+2bc-2b-2c+2\Leftrightarrow\left(b-1\right)\left(c-1\right)\ge0\).

Điều này đúng. Vậy \(f\left(a,b,c\right)\le f\left(a,b+c-1,1\right)\).

Nhận thấy do \(a+b+c=6\) nên \(f\left(a,b+c-1,1\right)=f\left(a,5-a,1\right)=a^2+\left(5-a\right)^2+1=2\left(a^2-5a+13\right)\).

Ta sẽ tìm max của biểu thức này. Giá trị max đó là \(14\), xảy ra khi \(a=2\)

Vậy \(f\left(a,b,c\right)\le14\). Đẳng thức xảy ra tại \(a=2,b=3,c=1\).

------

Ý tưởng tương tự trên sẽ giúp các em làm được bài toán sau:

Cho \(0\le a,b,c\le2\) thoả \(a+b+c=3\). Tìm min của biểu thức \(ab+bc+ca\).

3
2 tháng 1 2017

À có ai không hiểu gì thì hỏi nha! Còn ai muốn click "đúng" cho anh thì cho anh cảm ơn!

5 tháng 9 2019

Cách khác cho bài đầu: 

Ta có: \(a+b=6-c\le5\)

\(a^2+b^2+c^2=a.a+b.b+c.c\)

\(=\left(a-b\right)a+\left(b-c\right)\left(a+b\right)+c\left(a+b+c\right)\)

\(\le\left(a-b\right).3+5\left(b-c\right)+6c\)

\(=3a+2b+c=\left(a+b+c\right)+a+\left(a+b\right)\)

\(\le6+3+5=14\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;2;1\right)\) và các hoán vị của nó.

Cách này dường như ez hơn ấy nhỉ? Mà đúng không ta:3