K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(\Leftrightarrow x^2+\left(x^2+2x+1\right)+2=0\)

\(\Leftrightarrow x^2+\left(x+2\right)^2+2=0\)

\(\Leftrightarrow x^2+\left(x+2\right)^2=-2\)

Có : \(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vậy pt vô nghiệm .

19 tháng 9 2016

Cách 1. \(x^2+x+3=\left(x^2+x+\frac{1}{4}\right)+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)

Dấu "=" không xảy ra nên pt vô nghiệm.

Cách 2. Ta có  \(x^2+x+3=\left(x^2+x+1\right)+2\)

Mà \(x^2+x+1\) là bình phương thiếu của một tổng nên vô nghiệm.

=> PT vô nghiệm.

13 tháng 7 2016

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(=x^2+\left(x^2+2x+1\right)+2=0\)

\(=x^2+\left(x+2\right)^2+2=0\)

\(\Rightarrow x^2+\left(x+2\right)^2=-2\)

Có:

\(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vì vậy phương trình vô nghiệm.

13 tháng 1 2016

Ngồi tick kiếm "tiền"

Ngồi làm mất thời gian

AI thấy đúng thì tick nhé!!!

23 tháng 3 2020

a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)

\(\Leftrightarrow0x=-9\)(vô lí)

Vậy phương trình vô nghiệm

b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)

chúc bn học tốt!

12 tháng 2 2020

a) Ta có: \(x^2+2x+3\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2>0\)

Vậy pt vô nghiệm

12 tháng 2 2020

b) Ta có \(x^2+2x+4\)

\(=\left(x^2+2x+1\right)+3\)

\(=\left(x+1\right)^2+3>0\)

Vậy pt vô nghiệm

23 tháng 2 2018

      \(x^2-8x+17=0\)

\(\Leftrightarrow\)\(x^2-8x+16+1=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+1=0\)

Ta thấy    \(\left(x-4\right)^2\ge0\)\(\Rightarrow\)\(\left(x-4\right)^2+1\ge1\)

Vậy pt vô nghiệm

18 tháng 4 2018

\(a)\) Ta có : 

\(\left(x-1\right)^2\ge0\)

\(3x^2\ge0\)

\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)

Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)

Vậy phương trình có nghiệm \(x=0\) và \(x=1\)

Đề sai nhé 

18 tháng 4 2018

\(b)\) Ta có : 

\(x^2+2x+3\)

\(=\)\(\left(x^2+2x+1\right)+2\)

\(=\)\(\left(x+1\right)^2+2\ge2>0\)

Vậy đa thức \(x^2+2x+3\)  vô nghiệm 

Em mới lớp 7 có gì sai anh thông cảm nhé 

13 tháng 7 2016

Mình nhớ là đã làm rồi mà ?

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(=x^2+\left(x^2+2x+1\right)+2=0\)

\(=x^2+\left(x+2\right)^2+2=0\)

\(\Rightarrow x^2+\left(x+2\right)^2=-2\)

Có :

\(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vì vậy phương trình vô nghiệm.

13 tháng 7 2016

hihi cảm ơn nha