Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(3x+2m\right):2=\dfrac{3}{2}x+m\) bậc 1 nên không thể là bình phương của đa thức bậc 1
\(M=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)
Đặt \(x^2+10x+20=y\)ta được :
\(M=\left(y-4\right)\left(y+16\right)+16\)
\(\Leftrightarrow M=y^2-16+16\)
\(\Leftrightarrow M=y^2\)
Mà theo bài thì \(x\in Q\)nên \(y\in Q\)suy ra đpcm
xin lỗi nha ! Ở chỗ hàng thứ tư là \(M=\left(y-4\right)\left(y+4\right)+16\)mới đúng . Biết là viết sai nhưng vẫn chưa kịp sửa mong bạn thông cảm ...
\(M=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(M=\left(x^2+10+16\right)\left(x^2+10x+24\right)+16\)
\(M=\left(x^2+16+10x\right)\left(x^6+10x+16+8\right)+16\)
\(M=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(M=\left(x^2+10x+20\right)^2\left(đpcm\right)\)
Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------...
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên
Ta có: (ax+b)(cx+d) = acx2 + (ad + bc)x + bd (1)
a = c = ±1 , (1) trở thành: x2 + ±(b+d)x + bd
Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m
Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72
Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0
Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17
Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27
k mk nhá!!!ố~ồ
Đáp án này trên yahoo nha
Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x^2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------...
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên
Ta có: (ax+b)(cx+d) = acx^2 + (ad + bc)x + bd (1)
a = c = ±1 , (1) trở thành: x^2 + ±(b+d)x + bd
Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m
Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72
Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0
Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17
Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...
Tích nha
Sửa: \(16a^4+72a^2+m=\left(4a^2\right)^2+4\cdot2\cdot9a^2+81\Leftrightarrow m=81\)