Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
\(2009-\left(4\frac{5}{9}+x-7\frac{7}{18}\right):15\frac{2}{3}=2008\)
\(2009-\left(\frac{41}{9}+x-\frac{133}{8}\right):\frac{47}{3}=2008\)
\(2009-\left(\frac{41}{9}+x-\frac{133}{8}\right)\times\frac{3}{47}=2008\)
\(2009-\frac{41}{9}\times\frac{3}{47}-x\times\frac{3}{47}+\frac{133}{8}\times\frac{3}{47}=2008\)
\(2009-\frac{41}{141}-x\times\frac{3}{47}+\frac{399}{376}=2008\)
\(2009+(\frac{399}{376}-\frac{41}{141})-x\times\frac{3}{47}=2008\)
\((2009+\frac{869}{1128})-x\times\frac{3}{47}=2008\)
\(x\times\frac{3}{47}=2009+\frac{869}{1128}-2008\)
\(x\times\frac{3}{47}=1\frac{869}{1128}\)
\(x\times\frac{3}{47}=\frac{1997}{1128}\)
\(x=\frac{1997}{1128}:\frac{3}{47}\)
\(x=\frac{1997}{72}\)
\(2009-\left(4\frac{5}{9}+x-7\frac{7}{18}\right):15\frac{2}{3}=\)2008
\(\left(\frac{41}{9}+x-\frac{133}{18}\right):\frac{47}{3}=2009-2008\)
\(\left(\frac{41}{9}+x-\frac{133}{18}\right)=1.\frac{47}{3}=\frac{47}{3}\)
\(\frac{82}{18}+x-\frac{133}{18}=\frac{47}{3}\)
\(x=\frac{282}{18}-\frac{82}{18}+\frac{133}{18}\)
\(x=\frac{333}{18}=\frac{37}{2}\)
Đáp số \(x=\frac{37}{2}\)
xin lỗi bn dấu nhân nó bị trùng với x nên mk thay dấu nhân thành dấu "." theo cách lớp 6 nha.
Nếu có chỗ nào sai thì mk xin lỗi các bạn và mong các bạn góp ý
*****Chúc bạn học giỏi*****
bài 1
a,
32 + 68 :17 x 5 - 29
= 32 + 20 -29
= 52 - 29
= 23
b,
15 x 48 - 30 x 24 - 125
= 720 - 720 -125
= 0-125
a,
32 + 68 :17 x 5 - 29
= 32 + 20 -29
= 52 - 29
= 23
b,
15 x 48 - 30 x 24 - 125
= 720 - 720 -125
= 0-125
ta có
\(1-\frac{2018}{2019}=\frac{1}{2019}\)và\(1-\frac{2019}{2020}=\frac{1}{2020}\)
vì\(\frac{1}{2019}>\frac{1}{2020}\)vậy\(\frac{2018}{2019}>\frac{2019}{2020}\)
a) Ta có \(\frac{13}{7}=2-\frac{1}{7}\)
\(\frac{21}{12}=2-\frac{1}{4}\)
Vì \(\frac{1}{7}< \frac{1}{4}\)\(\Rightarrow2-\frac{1}{7}>2-\frac{1}{4}\)\(\Rightarrow\frac{13}{7}>\frac{21}{12}\)
Vậy \(\frac{13}{7}>\frac{21}{12}\)
b) Ta có : \(\frac{2018}{2019}=1-\frac{1}{2019}\)
\(\frac{2019}{2020}=1-\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow1-\frac{1}{2019}< 1-\frac{1}{2020}\Rightarrow\frac{2018}{2019}< \frac{2019}{2020}\)
Vậy \(\frac{2018}{2019}< \frac{2019}{2020}\)
c) Ta có :Vì \(\frac{17}{53}< \frac{17}{50}< \frac{19}{50}\) \(\Rightarrow\frac{17}{53}< \frac{19}{50}\)
Vậy \(\frac{17}{53}< \frac{19}{50}\)
\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\frac{60}{90}=\frac{2}{3}\)
a) Ta có : \(\frac{12}{48}< \frac{12}{47}\); \(\frac{12}{48}< \frac{13}{48}\)
=> \(\frac{12}{48}< \frac{13}{47}\)
b) Ta có : \(\frac{7}{13}=1-\frac{6}{13}\)
\(\frac{17}{23}=1-\frac{6}{23}\)
Mà \(-\frac{6}{13}< -\frac{6}{23}\)=> \(\frac{7}{13}< \frac{17}{23}\)