Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a có dạng 7k
b có dạng 7k + 2
c có dạng 7k + 3
\(\Rightarrow\) a + b = 7k + 7k + 2 = 14k + 2 chia 7 dư 2
b + c = 7k + 2 + 7k + 3 = 14k + 5 chia 7 dư 5
a) a chia 3 có thương là 15; số dư có thể là 0 ; 1; 2.
TH1: dư 0 => a = 15 . 3 + 0 = 45
TH2: dư 1 => a = 15 . 3 + 1 = 46
TH3: dư 2 => a = 15 . 3 + 2 = 47
Vậy \(a\in\left\{45;46;47\right\}\)
Mình lm bài 3 nhá!!!
Bài 3:Chứng tỏ rằng:
a) n + 1 và n + 2 nguyên tố cùng nhau
Gọi UCLN ( n+1; n+2 ) = d
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow n+2-n-1⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(n+2;+1\right)=1\)
Vậy n + 1 và n +2 là hai số nguyên tố cùng nhau
b) 2n + 3 và 3n + 4
Gọi UCLN ( 2n+3; 3n+4 ) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d}\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(2n+3;3n+4\right)⋮d\)
Vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau.
Bài 1 : Sai đề bài vì a chia 7 dư 9 trong khi theo quy tắc thì số dư < số chia mà 9 > 7 => sai đề.
Nếu mà sửa lại đề lại đề bài thì có đề bài mới là: Một số tự nhiên a khi chia cho 7 dư 2 và chia 9 dư 7. Tìm số dư khi a : 63
thì đáp số sẽ là: a : 63 dư 16.