K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2015

a có dạng 7k

b có dạng 7k + 2

c có dạng 7k + 3

\(\Rightarrow\) a + b = 7k + 7k + 2 = 14k + 2 chia 7 dư 2

       b + c = 7k + 2 + 7k + 3 = 14k + 5 chia 7 dư 5

30 tháng 1 2016

lì xì tết thì phải vừa nhiều vừa khó chứ

duyệt đi

30 tháng 1 2016

Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ

20 tháng 11 2015

avt320942_60by60.jpgnguyễn quang anh   **** đã.

27 tháng 6 2016

a) a chia 3 có thương là 15; số dư có thể là 0 ; 1; 2.

TH1: dư 0 => a = 15 . 3 + 0 = 45

TH2: dư 1 => a = 15 . 3 + 1 = 46

TH3: dư 2 => a = 15 . 3 + 2 = 47

Vậy \(a\in\left\{45;46;47\right\}\)

26 tháng 11 2017

Mình lm bài 3 nhá!!!

Bài 3:Chứng tỏ rằng:

a) n + 1 và n + 2 nguyên tố cùng nhau

Gọi UCLN ( n+1; n+2 ) = d

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Rightarrow n+2-n-1⋮d\Rightarrow1⋮d\)

\(\Rightarrow d=1\Rightarrow UCLN\left(n+2;+1\right)=1\)

Vậy n + 1 và n +2 là hai số nguyên tố cùng nhau

b) 2n + 3 và 3n + 4

Gọi UCLN ( 2n+3; 3n+4 ) = d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d}\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d=1\Rightarrow UCLN\left(2n+3;3n+4\right)⋮d\)

Vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau.

2 tháng 11 2019

Bài 1 : Sai đề bài vì a chia 7 dư 9 trong khi theo quy tắc thì số dư < số chia mà 9 > 7 => sai đề.

 Nếu mà sửa lại đề lại đề bài thì có đề bài mới là: Một số tự nhiên a khi chia cho 7 dư 2 và chia 9 dư 7. Tìm số dư khi a : 63

thì đáp số sẽ là:               a : 63 dư 16.

2 tháng 11 2019

Cảm ơn