Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
#)Giải :
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(A< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(A< \frac{1}{100}-\frac{1}{105}\)
\(A< \frac{1}{2100}=\frac{1}{2^2.3.5^2.7}\)
\(\Rightarrow A< B\)
P/s : Hình như viết sai đề ở chỗ 32 thì phải ??? Bài tui làm là đã sửa lại đề rùi nhé !
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
=\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5\left(7^3-7^4\right)}{7^3.3^2}\)
=\(\frac{3^4\left(3-1\right)}{^{ }3^4\left(9+3\right)}-\frac{5.7^3-5.7^4}{7^3.3^2}\)
=\(\frac{1}{6}-\frac{7^3.5\left(1-7\right)}{7^3.3^2}=\frac{1}{6}-\frac{30}{9}=-\frac{19}{6}\)
Vậy A=\(-\frac{19}{6}\)
câu b lúc nã mk làm sai rui
dây mới đúng
=\(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
=\(\frac{1}{5}\left(1-\frac{1}{101}\right)=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
#)Giải :
a)\(2^6.5^6=\left(2.5\right)^6=10^6\)
b)\(8^2.5^2=\left(8.5\right)^2=40^2\)
c)\(4^3.5^3=\left(4.5\right)^3=20^3\)
d)\(5^2.6^2.3^2=\left(5.6.2\right)^2=60^2\)
e)\(\frac{625^5}{25^8}=\frac{\left(25^2\right)^5}{25^8}=\frac{25^{10}}{25^8}=25^2\)
g)\(\frac{3^9}{7}.\frac{7^9}{3}=\frac{\left(3.7\right)^9}{7.3}=\frac{21^9}{21}=21^8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
\(3^{1+2+3+..+x}=3^{3.12}\Leftrightarrow\frac{x\left(x+1\right)}{2}=36\)
\(\Leftrightarrow x.\left(x+1\right)=72=8.9\Leftrightarrow x=8\)
b. ta có
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}=\left(\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)+1-\frac{1}{5^{2017}}\)
\(=A+1-\frac{1}{5^{2017}}\Rightarrow4A=1-\frac{1}{5^{2017}}< 1\Rightarrow A< \frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{3^9-2^3\cdot3^7+2^{10}\cdot3^2-2^{13}}{3^{10}-2^2\cdot3^7+2^{10}\cdot3^3-2^{12}}\)
\(B=\frac{1-2\cdot1+1\cdot1-2}{3-1\cdot1+1\cdot3-1}\)
\(B=\frac{1-2+1-2}{3-1+3-1}\)
\(B=\frac{-1+\left(-1\right)}{2+2}\)
\(B=\frac{-2}{4}\)
\(\Rightarrow B=\frac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{35.37}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{35}-\frac{1}{37}\)
\(=\frac{1}{3}-\frac{1}{37}=\frac{34}{111}\)
c) \(\frac{7}{7.9}+\frac{7}{9.11}+\frac{7}{11.13}+...+\frac{7}{99.101}\)
\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{101}\right)=\frac{7}{2}\cdot\frac{94}{707}=\frac{47}{101}\)
\(\frac{2^3.5^2.7^2.3^7}{49.5^3.3^6.11}\)
= \(\frac{24}{55}\)
Hok tốt
\(\frac{2^3.5^{^2}.7^2.3^7}{49.5^3.3^6.11}\)
\(=\)\(\frac{24}{55}\)
Hok tốt