Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
Bạn hãy truy cập trang này đi, bài này mình làm rùi! Link: https://olm.vn/hoi-dap/question/845081.html
Rõ ràng ta thấy A<1 nên theo a, nếu \(\frac{a}{b}< 1\Rightarrow\frac{a+n}{b+n}>\frac{a}{b}\)=> \(A< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}\)
Do đó, \(A< \frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)=> A<B
Anh cũng nằm trong đội tuyển nàk em tham khảo nhé
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow\)\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}< 1\)\(\left(1\right)\)
Lại có :
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow\)\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)\(\left(2\right)\)
Từ (1) và (2) suy ra \(10A< 1< 10B\) hay \(A< B\)
Vậy \(A< B\)
10A=\(\frac{10^{12}-10}{10^{12}-1}\)=\(1-\frac{9}{10^{12}-1}\)
10B=\(\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Sao sánh 10A với 10B
Vì 1=1 nên so sánh \(-\frac{9}{10^{12}-1}\)với \(\frac{9}{10^{11}+1}\)
=> \(-\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1}\)
=> 10A < 10B
=> A < B
TA CÓ: A=\(\frac{10^{11}-1}{10^{12}-1}\) > \(\frac{10^{11}-1-9}{10^{12}-1-9}\)= \(\frac{10^{11}-10}{10^{12}-10}\) =\(\frac{10\left(10^{10}-1\right)}{10\left(10^{11}-1\right)}\)
\(\Rightarrow\)A>\(\frac{10^{10}-1}{10^{11}-1}\)=B
VẬY A>B
A, 910 -4/910- 5
= (9-4/9)10- 5
= 77/910 - 5
910 - 2/910 - 3
=( 9-2/9 )10 - 3
= 79/910 -3
vì 77/9
a) Ta có: \(1-\frac{9^{10}-4}{9^{10}-5}=\frac{-1}{9^{10}-5}\)
\(1-\frac{9^{10}-2}{9^{10}-3}=\frac{-1}{9^{10}-3}\)
Vì \(\frac{-1}{9^{10}-5}< \frac{-1}{9^{10}-3}\Rightarrow1-\frac{9^{10}-4}{9^{10}-5}< 1-\frac{9^{10}-2}{9^{10}-3}\)
\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\).
b) Ta có: \(1-\frac{2.7^{10}-1}{7^{10}}=\frac{7^{10}+1}{7^{10}}\)
\(1-\frac{2.7^{10}+1}{7^{10}+1}=\frac{7^{10}}{7^{10}+1}\)
Vì \(\frac{7^{10}+1}{7^{10}}>\frac{7^{10}}{7^{10}+1}\Rightarrow1-\frac{2.7^{10}-1}{7^{10}}>1-\frac{2.7^{10}+1}{7^{10}+1}\)
\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
Ta có:
\(A=\frac{10^{11}+1}{10^{10}+1}< \frac{10^{11}+1+9}{10^{10}+1+9}=\frac{10^{11}+10}{10^{10}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^9+1\right)}=\frac{10^{10}+1}{10^9+1}=B\)
Vậy A < B