K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.

b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.

c) So sánh các diện tích của 2 tam giác RPQ và RNQ.

Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.

Bài giải:

a) Hai tam giác PMQ và PQR có:

  • Chung đỉnh P.
  • Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có chung chiều cao xuất phát từ P.

Mặt khác do Q là trọng tâm của tam giác MNP suy ra MQ = 2RQ.

Từ đó suy ra: b) Tương tự câu a.

c) Hai tam giác RPQ và RNQ có chung đỉnh Q, hai cạnh NR và RP cùng nằm trên một đường thẳng nên chúng có chung đường cao từ Q. RN = RP do đó:

 

Bài tập 68 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho góc xOy, hai điểm A,B lần lượt nằm trên Ox và Oy.

a) Hãy tìm điểm M cách đều hai cạnh của góc xOy và cách đều hai điểm A,B.

b) Nếu OA = OB thì có bao nhiêu điểm M thoả mãn yêu cầu ở câu a?

Bài giải:

a) Điểm M cách đều hai cạnh của góc xOy suy ra M nằm trên đường phân giác của góc đó.

Điểm M cách đều A và B suy ra M nằm trên đường trung trực của AB.

Vậy ta xác định được M chính là giao điểm của hai đường thẳng trên.

b) Nếu OA = OB thì đường trung trực của AB chính là phân giác góc xOy do khi đó tam giác OAB cân tại O, đường phân giác đồng thời là đường trung trực của cạnh AB.

Khi đó thì có vô số điểm M thoả mãn, tập hợp điểm M thoả mãn yêu cầu chính là đường phân giác của góc xOy.

Bài tập 69 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho hai đường thẳng phân biệt không song song, không vuông góc với nhau là a và b, điểm M không nằm trên hai đường này. Qua M lần lượt vẽ đường thẳng c vuông góc với a tại P, cắt b tại Q và vẽ đường thẳng d vuông góc với b tại R, cắt a tại S.

Chứng minh rằng đường thẳng qua M vuông góc với SQ cũng đi qua giao điểm của a và b.

Bài giải: Vì a và b không song song nên chúng cắt nhau giả sử tại A.

Xét tam giác AQS có: QP ⊥ AS vì QP ⊥ a.

SR ⊥ AQ vì SR ⊥ b.

Ta có QP và RS cắt nhau tại M.

Vậy M là trực tâm của ΔAQS.

=> Đường thẳng đi qua M và vuông góc với QS tại H sẽ là đường cao thứ ba của ΔAQS.

Vậy MH phải đi qua đỉnh A của ΔAQS hay đường thẳng vuông góc với QS đi qua giao điểm của a và b (Điều phải chứng minh).

Bài tập 70 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho A, B là hai điểm phân biệt và d là đường trung trực của đoạn thẳng AB.

a) Ta ký hiệu PA là nửa mặt phẳng bờ là đường thẳng d có chứa điểm A (không kể d). Gọi N là một điểm của PA và M là giao điểm của đường thẳng NB và d. Hãy so sánh NB với NM + MA. Từ đó suy ra NA < NB.

b) Ta ký hiệu PB là nửa mặt phẳng bờ d có chứa B (không kể d). Gọi N’ là một điểm của PB. Chứng minh rằng N’B < N’A.

c) Gọi L là một điểm sao cho LA < LB. Hỏi điểm L nằm ở đâu?

Bài giải: a) Ta có M nằm trên đường trung trực của AB nên MA = MB.

N, M, B thẳng hàng nên NB = NM + MB

Mà MA = MB suy ra NB = NM + MA.

Xét tam giác NMA ta có: NM + MA > NA => NB > NA.

b) Tương tự câu a.

c) L phải nằm ở PA

0
16 tháng 5 2017

M N P Q S A R B

a) Vẽ PB ⊥ MR

Vậy tam giác MPQ và RPQ có chung đường cao PB

Vì Q là trọng tâm của ΔMNR nên MQ = 2QR

Ta có : 

\(S\Delta MPQ=\frac{1}{2}MQ.PB=\frac{1}{2}.2QR.PB=QR.PB\) 

\(S\Delta RPQ=\frac{1}{2}QR.PB\) 

Vậy \(\frac{S\Delta MPQ}{S\Delta RPQ}=\frac{QR.PB}{\frac{1}{2}QR.PB}=2\) 

b) Vẽ NA ⊥ MR

Vậy NA là đường cao của ΔMNQ đồng thời là đường cao của ΔRNQ.

Vì Q là trọng tâm của ΔMNP nên MQ = 2QR

Ta có :

\(S\Delta MNQ=\frac{1}{2}MQ.NA=\frac{1}{2}.2QR.NA=QR.NA\) 

\(S\Delta RNQ=\frac{1}{2}QR.NA\) 

Vậy \(\frac{S\Delta MNQ}{S\Delta RNQ}=\frac{QR.NA}{\frac{1}{2}QR.NA}=2\) 

c) \(\Delta NRA=\Delta PRB\) => NA=PB

Ta có :\(S\Delta RPQ=\frac{1}{2}QR.PB=\frac{1}{2}QR.NA=S\Delta RNQ\) 

Vậy SΔRPQ = SΔRNQ

- Từ kết quả câu a) ta có:

    SΔQPM = 2SΔPRQ = SΔQNP (do câu c) (*)

- Từ kết quả câu b) ta có:

    SΔQMN = 2SΔRNQ = SΔQNP (**)

Từ (*) và (**) suy ra:

    SΔQMN = SΔQNP = SΔQPM (đpcm) 

19 tháng 4 2017
Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

19 tháng 4 2017

a) Vì Q là trọng tâm của ∆MNP nên điểm Q thuộc đường trung tuyến MR và MQRQ=2MQRQ=2.

Vì hai tam giác ∆MPQ và ∆RPQ có chung đường cao kẻ từ P nên :

SΔMPQSΔRPQ=MQRQ=2SΔMPQSΔRPQ=MQRQ=2 (1)

b) Chứng minh tương tự như câu (a) ta có :

SΔMPQSΔRPQ=2(2)SΔMPQSΔRPQ=2(2)

c) Hai tam giác ∆PQR và ∆QNR có chung đường cao kẻ từ Q và PR = RN nên S∆PQR = S∆QNR

Vì S∆PQR + S∆QNR = S∆PQN

Nên S∆PQN = 2.S∆PQR = 2.S∆QNR (3)

Từ (1), (2), (3) => S∆QMN = S∆QNP = S∆QPM



19 tháng 10 2018

 

Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

Δ RPQ và Δ RNQ có cùng đường cao.

Gọi m là độ dài đường vuông góc kẻ từ Q đến NP.

Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

24 tháng 4 2017

Hình tự vẽ nha =)

Ta có : S tam giác RNQ= đường cao hạ từ Q xuống MP nhân cho đáy RN

            S tam giác RPQ=đường cao hạ từ Q xuống MP nhân cho đáy RP   

Vì RN=RP ( MR là trung tuyến ứng với PN)

    Vậy S tam giác RPQ=S tam giác RNQ

A) cho tam giác ABC h. 53 hãy chỉ ra đường trung trực của tam giác đó -hãy vẽ tam giác ABC có độ dài lần lượt là 5cm, 12cm, 13cm, từ đó vẽ các đường trung trực của tam giác nàyB)vẽ tam giác MNP và hai đường trung trực tương ứng với các cạnh MN, MP, - gọi O là giao điểm của đường trung trực nói trên-đo độ dài ba đoạn thẳng nói giao điểm O và ba đỉnh của tam giác em có nhận xét gì về...
Đọc tiếp

A) cho tam giác ABC h. 53 hãy chỉ ra đường trung trực của tam giác đó 

-hãy vẽ tam giác ABC có độ dài lần lượt là 5cm, 12cm, 13cm, từ đó vẽ các đường trung trực của tam giác này

B)vẽ tam giác MNP và hai đường trung trực tương ứng với các cạnh MN, MP, 

- gọi O là giao điểm của đường trung trực nói trên

-đo độ dài ba đoạn thẳng nói giao điểm O và ba đỉnh của tam giác em có nhận xét gì về độ dài ba đoạn thẳng này

C) thực hiện chứng minh tính chất thông qua việc điền vào các chỗ trống dưới đây:

-vì O nằm trên đường trung trực của đoạn thẳng AC nên OA=OC(1)

-vì O nằm trên đường trung trực của đoạn thẳng AB Nên OA=............(2)

Từ (1) và (2) suy ra . .....=...........(=OA)

Do đó điểm O nằm trên đường.........................của cạnh BC (theo tính chất đường trung trực)

Vậy ba đường trung trực của tam giác ABC cùng đi qua điểm O và ta có OA=OB=OC

Mấy bạn làm giúp mình nha mai mình học rồi sách Venen nha mấy bạn trang 106-107

 

 

0
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi