Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOIA và ΔOIB có
OA=OB(gt)
\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))
OI chung
Do đó: ΔOIA=ΔOIB(c-g-c)
xét tam giác OIA và OIB có
OA=OB
\(\widehat{O_1}=\widehat{O_2}\)
OI chung
△OIA=△OIB(c.g.c)
gọi OI giao vs AB tại K
xét △AIK và △BIK có
IA=IB(cmt từ câu a)
\(\widehat{AIK}=\widehat{BIK}\)(cmt từ câu a)
IK chung
△AIK= △BIK(c.g.c)
=>\(\widehat{K_2}=\widehat{K_3}\)(2 góc t/ứng)
mà K∈AB=>\(\widehat{K_2}=\frac{180}{2}=90^o\)
=>OI⊥AB
và AK=KB (2 cạnh t/ứng )
mà I∈Ot=>Ot là đường trung trực của AB
a: Xét ΔOMA và ΔOMB có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
OA=OB
Do đó: ΔOMA=ΔOMB
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC
a) Xét tam giác \(OIA\) và tam giác \(OIB\) có:
\(OA=OB\)
\(\widehat{AOI}=\widehat{BOI}\)
\(OI\) cạnh chung
suy ra \(\Delta OIA=\Delta OIB\) (c.g.c)
b) Xét tam giác \(OIN\) và tam giác \(OIM\):
\(\widehat{ION}=\widehat{IOM}\)
\(OI\) cạnh chung
\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)
suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)
\(\Rightarrow IN=IM\)
c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).
Xét tam giác \(INA\) và tam giác \(IMB\):
\(IA=IB\)
\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)
\(IN=IM\)
suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)
d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)
suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).
đề bài thiếu rùi...Gọi A,B lần lượt là các điểm trên tia Ox & Oy sao cho OA=OB...
Như dzậy mới giải đc
đề thiếu phải ko bạn :phải là gọi A,Blần lượt là cac điểm trên tia Ox ,Oy
nếu như ko có nằm trên tia Oy thì A sẽ trùng vs B
suy ra đề sai (thiếu)