Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) D = [1;4] \{2;3}
b) D = (0;+∞)
2.
\(2\overrightarrow{a}\)= (2;4) và \(3\overrightarrow{b}\) = (9;12)
⇒ \(2\overrightarrow{a}\) + \(3\overrightarrow{b}\) = (2+9; 4+12)
⇔ (11; 16)
Vậy \(\overrightarrow{m}\) = (11;16)
Hok nhanh phết, chưa j đã đến phần toạ độ vecto r
1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)
\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)
\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)
2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)
3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)
\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)
\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)
Câu 4 tương tự
Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx
a) Từ điểm I trên AB thỏa mãn IA = 1/2 IB ta vẽ đường song song với BC. Điểm N nằm trên đó.
B) tương tự câu a)
a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)
\(\Leftrightarrow2x+2+2x-1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)
\(\Leftrightarrow4x+1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{4x^2+2x-2}=-x^2+4x+1\)( ĐK: \(2-\sqrt{5}\le x\le2+\sqrt{5}\))
\(\Leftrightarrow4\left(4x^2+2x-2\right)=\left(x^2-4x-1\right)^2\)
\(\Leftrightarrow16x^2+8x-8=x^4-8x^3+14x^2+8x+1\)
\(\Leftrightarrow x^4-8x^3-2x^2+9=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2-9x^2+9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2-9x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(chon\right)\\x=8,22...\left(loai\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=-1\)
b_em ko chắc đâu, chưa từng làm dạng toán chứa tham số-_-
ĐK: \(x^2\ge-m\) ( ko chắc)
PT<=> \(\left(x-3\right)\sqrt{x^2+m}=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left[x+3-\sqrt{x^2+m}\right]=0\)
Thấy ngay x = 3 thỏa mãn. Xét cái ngoặc to
\(\Leftrightarrow x+3=\sqrt{x^2+m}\left(\text{thêm đk }x\ge-3\right)\Leftrightarrow6x+9=m\Leftrightarrow x=\frac{\left(m-9\right)}{6}\)
Do \(x\ge-3\text{nên }m\ge-9\)
Vậy...