K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEM vuông tại E và ΔBKM vuông tại K có

BM chung

góc EBM=góc KBM

=>ΔBEM=ΔBKM

=>ME=MK

b: Xét ΔCKM vuông tại K và ΔCFM vuông tại F có

CM chung

góc KCM=góc FCM

=>ΔCKM=ΔCFM
=>MK=MF

=>ME=MF

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

MF=ME

=>ΔAEM=ΔAFM

=>góc EAM=góc FAM

=>AM là phân giác của góc BAC

a: Xét ΔBEM vuông tại E và ΔBKM vuông tại K có

BM chung

góc KBM=góc EBM

=>ΔBEM=ΔBKM

=>ME=MK

b: Xét ΔCKM vuông tại K và ΔCFM vuông tại F có

CM chung

góc KCM=góc FCM

=>ΔCKM=ΔCFM

=>MK=MF=ME

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>góc EAM=góc FAM

=>AM là phân giác của góc BAC

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao choAM > BM và AN > CN. Chứng minh rằng:a) BC < BM + CN + MN.b) BC nhỏ hơn chu vi của tam giác AMN.Bài 2. Tính chu vi của tam giác cân ABC, biết:a) AB = 2cm, AC = 5cmb) AB = 16cm, AC = 8cm.Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M khôngtrùng với C). Chứng minh MA + MB > CA + CB.Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền...
Đọc tiếp

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.

Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.

Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.

Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).

Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh

MN< hoặc = (AC+BD)/2

Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.

0

a: Xét ΔBAM và ΔBEM có

BA=BE

góc ABM=góc EBM

BM chung

=>ΔBAM=ΔBEM

=>góc BAM=góc BEM=90 độ

=>ME vuông góc BC

b: ME=MA

mà MA<MF

nên ME<MF

c: ΔMAE có MA=ME

nên ΔMAE cân tại M

17 tháng 2 2022

giúp mình vs, mình đg cần gấp lắm

17 tháng 2 2022

lại là mày thằng này mày chửi ít thôi 

24 tháng 11 2021

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (gt)

AM chung

BM = MC (M là trung điểm BC)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)

\(\Rightarrow AM\) là tia phân giác của \(\widehat{BAC}\)

b) Xét hai tam giác vuông \(\Delta AME\)\(\Delta AMF\) có:

\(\widehat{AEM}=\widehat{AFM}=90^0\)

AM chung

\(\widehat{MAE}=\widehat{MAF}\) (do AM là tia phân giác của \(\widehat{BAC}\))

\(\Rightarrow\Delta AME=\Delta AMF\) (cạnh huyền - góc nhọn)

\(\Rightarrow AE=AF\) (hai cạnh tương ứng)

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc A chung

=>ΔAMB=ΔANC

b: AN=căn 10^2-8^2=6cm=AM

c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có

AH chung

AN=AM

=>ΔNAH=ΔMAH

=>góc NAH=góc MAH

=>H nằm trên tia phân giác của góc BAC