Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEM vuông tại E và ΔBKM vuông tại K có
BM chung
góc KBM=góc EBM
=>ΔBEM=ΔBKM
=>ME=MK
b: Xét ΔCKM vuông tại K và ΔCFM vuông tại F có
CM chung
góc KCM=góc FCM
=>ΔCKM=ΔCFM
=>MK=MF=ME
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>góc EAM=góc FAM
=>AM là phân giác của góc BAC
a) Xét ΔAMB và ΔEMB có
BA=BE(gt)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))
BM chung
Do đó: ΔAMB=ΔEMB(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MEB}=90^0\)
hay ME\(\perp\)BC(đpcm)
b) Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)
\(\Leftrightarrow\widehat{ABC}=60^0\)
hay \(\widehat{ABE}=60^0\)
Xét ΔABE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
a: Xét ΔBAM và ΔBEM có
BA=BE
góc ABM=góc EBM
BM chung
=>ΔBAM=ΔBEM
=>góc BAM=góc BEM=90 độ
=>ME vuông góc BC
b: ME=MA
mà MA<MF
nên ME<MF
c: ΔMAE có MA=ME
nên ΔMAE cân tại M
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (gt)
AM chung
BM = MC (M là trung điểm BC)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)
\(\Rightarrow AM\) là tia phân giác của \(\widehat{BAC}\)
b) Xét hai tam giác vuông \(\Delta AME\) và \(\Delta AMF\) có:
\(\widehat{AEM}=\widehat{AFM}=90^0\)
AM chung
\(\widehat{MAE}=\widehat{MAF}\) (do AM là tia phân giác của \(\widehat{BAC}\))
\(\Rightarrow\Delta AME=\Delta AMF\) (cạnh huyền - góc nhọn)
\(\Rightarrow AE=AF\) (hai cạnh tương ứng)
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc A chung
=>ΔAMB=ΔANC
b: AN=căn 10^2-8^2=6cm=AM
c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có
AH chung
AN=AM
=>ΔNAH=ΔMAH
=>góc NAH=góc MAH
=>H nằm trên tia phân giác của góc BAC
a: Xét ΔBEM vuông tại E và ΔBKM vuông tại K có
BM chung
góc EBM=góc KBM
=>ΔBEM=ΔBKM
=>ME=MK
b: Xét ΔCKM vuông tại K và ΔCFM vuông tại F có
CM chung
góc KCM=góc FCM
=>ΔCKM=ΔCFM
=>MK=MF
=>ME=MF
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
MF=ME
=>ΔAEM=ΔAFM
=>góc EAM=góc FAM
=>AM là phân giác của góc BAC