Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)
hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)
Ta có bảng:
x+3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)
a, Để M nguyên <=> 2x+1 \(⋮\)2
=> 2x+1 \(\in\)Ư (2)={ 2,-2,1,-1}
Đk x \(\in\)Z
Với 2x+1= 2 => x= 1/2. ( loại)
...
Làm tt => x={ 0; -1}
Vậy x= 0, x= -1 thì M nguyên
b, N = (x-3)/x = 1-(3/x)
Để N nguyên <=> 3\(⋮\)x
<=> x \(\in\)Ư(3)={ 1,-1,3,-3}
Vậy x ={ 1,-1,3,-3} thì N nguyên
c, H = (x-2)/2x (1)
Để H nguyên <=>x-2 chia hết cho 2x
=> 2.(x-2) phải chia hết cho 2x
Hay 2.(x-2) /2x = 1-(2/x) nguyên
=> x thuộc Ư (2)={ 2,-2,1,-1}
Thay x vào(1) để H nguyên => x={2,-2}
Vậy x={2,-2} thì H nguyên
a) Thay x = 1 vào M(x), ta được:
\(M\left(x\right)=m.1^2+2m.1-6=m+2m-6=3m-6=0\)
\(\Leftrightarrow3m=6\Leftrightarrow m=2\)
Vậy m = 2 thì M(x) có nghiệm bằng 1