\(x^2y\) - 2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

a) \(2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^3-2x=0\)

\(\Leftrightarrow x\left(x^2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

c) \(x^6+1=0\)

\(\Leftrightarrow x^6=-1\)

Ta có : \(x^6\ge0\) với mọi x

Mà : -1 < 0

=> Vô nghiệm

d) \(x^3+2x=0\)

\(\Leftrightarrow x\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)

e) \(x^5+8x^2=0\)

\(\Leftrightarrow x^2\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

f) \(x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)

g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 5:

a)

\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)

\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)

b)

\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)

\(=9+3-1-27=-18\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 7:

a)

\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)

Vậy đa thức có nghiệm $x=0; x=-2$

b)

\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy đa thức có nghiệm $x=0$

c)

\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)

Do đó đa thức vô nghiệm.

d)

\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)

Do đó đa thức vô nghiệm.

e)

\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)

Do đó đa thức vô nghiệm.

f)

\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)

\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)

Đa thức có nghiệm $x=1, x=-3$

13 tháng 8 2020

câu 1 

a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)

b) \(B=x^2y^3-3xy+4\)

khi x = -1 và y = 2

\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)

\(\Leftrightarrow B=1.8-\left(-6\right)+4\)

\(\Leftrightarrow B=14+4=18\)

c) nhân phần biến với biến hệ với hệ thì ra thôi

13 tháng 8 2020

Câu 1 a) |x - 2| + 4 = 6

=> |x - 2| = 2

=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Vậy x \(\in\left\{4;0\right\}\)

b) Thay x = -1 ; y = 2 vào B ta có :

B = (-1)2.23 - 3.(-1).2 + 4

= 8 + 6 + 4 = 18

c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)

Hệ số : 12

Bậc của đơn thức : 15

Phần biến x8y7

2) a)  f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)

= 4x3 - 2x2 + 2x + 6

Bậc của f(x) - g(x) là 3 

b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1

= 2x + 4

Lại có f(x) + g(x) = 0

=> 2x + 4 = 0

=> 2x = -4

=> x = -2

Vậy x = -2

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

16 tháng 6 2020

a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8

g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6

f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6

                 = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )

                 = 4x2 - x + 2

g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )

                = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8

               = ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )

                = 2x5 + 14x4 + 4x3 + 2x2 -9x - 14

16 tháng 6 2020

Đặt H(x) = g(x) + f(x)

=> H(x) = 4x2 - x + 2

H(x) = 0 <=> 4x2 - x + 2 = 0

              <=> x(4x - 1) = -2

x-1-212
4x-121-2-1
x1/41/2-1/40
 loạiloạiloạiloại

=> Không có giá trị x thỏa mãn 

Vậy H(x) vô nghiệm

Mình chỉ biết làm thế này thôi

23 tháng 5 2020

hầy :)) bạn chăm chỉ gõ đống latex này thiệt :vv

23 tháng 5 2020

cảm ơn bạn

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

25 tháng 4 2018

a)

\(x^3+x^2y+x^2-xy^2-y^3-y^2+2x+2y+3\\ =\left(x^3+x^2y+x^2\right)-\left(xy^2+y^3+y^2\right)+2x+2y+3\\ =x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+\left(x+y+1\right)+\left(x+y+1\right)+1\\ =\left(x+y+1\right)\left(x^2-y^2\right)+0+0+1\\ =0\left(x^2-y^2\right)+1\\ =0+1=1\)

b)

\(x^4y+x^3y^2+x^3y-x-y\\ =x^3y\left(x+y+1\right)-x-y\\ =x^3y\times0-x-y=0-x-y\\ =-x-y-1+1=-\left(x+y+1\right)+1\\ =-0+1=1\)